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CHAPTER I. INTRODUCTION 

Problem Statements 

Scarcity is a fact of life and the habitual condition of civilized 

society. Goods have never been available in such abundance as to 

exhaust all human wants. Natural resources have never been and will 

never be unlimited. What had been a some\Aat remote controversy among 

the committed few over the limits of growth due to natural resource 

scarcity was brought home forcefully during the energy crisis of 1973-

1974 and its current revival (69, p. xvii). Water, once regarded as a 

free good, is no exception. The supply of water for households, 

agriculture, and industry in the United States is a real and growing 

problem (80, p. 1). 

Although Iowa has been endowed with ample average rainfall, growing 

water demand coupled with variations in annual rainfall has brought 

about mounting concern about water availability for Iowa's future 

economic growth (79, p. 143). It is gradually recognized that planning 

of and control over water resources to assure their optimum uses and 

adequate supplies are of critical importance to continued expansion of 

the state's economy. Accordingly, it becomes necessary to make an 

overall economic evaluation of the water supply and demand situation 

at both state and regional levels in order to establish the basis for 

decisions involving long-run economic planning of water. 

Typically, a natural resource is put to a wide range of uses; almost 

all economic activities require water. To complicate natural resources 
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management, these uses are interrelated with each other by a web of 

interdependences among them. For instance, agriculture uses water and 

also such inputs as fertilizers, pesticides, farm equipment, and 

energy, which are produced by other sectors. Production of these 

intermediate products also requires water, so that, if these intermediate 

products cannot be adequately produced because of inadequate water 

supplies, agricultural products cannot be adequately produced either. 

Due to the interdependences among uses of a natural resource, once 

a shortage of the resource arises, its impact is not limited to a small 

segment of the economy, but tends to permeate the entire economy. 

Hence, no one use of a resource can be singled out for effective control 

and planning. It is necessary to treat all uses of the resource, or 

resource uses in the context of this study, simultaneously. Input-

output analysis is frequently used to deal with the interdependences 

among resource uses. This approach was adopted by Barnard and Dent in 

their water study for Iowa (5). 

However, emphasis on the interdependence dimension of the resource 

uses should not lose sight of a resource allocation dimension of the 

resource uses. Uses of a natural resource are not only interdependent, 

but also competitive. One committed use of a resource can exclude other 

uses. This requires purposeful allocation of resources among competing 

uses. What is needed for an effective overall evaluation of the demand 

and supply situation of a natural resource is an integrated view of 

the economy as a whole through a comprehensive model with natural 

resources as an integral part and with both the interdependent and 
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competitive dimensions combined. 

Study Objectives 

The general objectives of this study are (1) to develop an 

operational model integrating both competitive and interdependent 

dimensions of water uses, (2) to apply it to Northwest Iowa, and (3) to 

suggest a revised model for the future application to state and regions. 

More specifically, the study objectives are; 

1. to determine the level of final demands to support projected 

population and economic growth; 

2. to estimate production and water requirements to satisfy the 

final demands; 

3. to derive the shadow prices of water in alternative uses; 

4. to draw implications on water reallocation; and 

5. to make suggestions for further research needs. 

Procedures of Model Development and Application 

to Study Area 

The model to be developed is the combination of linear programming 

and input-output analysis. It consists of the objective function in 

terms of maximizing income, the input-output system, and the resource 

constraints. Two versions of the model are presented. In the first 

version, the input-output system is an open system which consists of 

production activities alone. Such a system will be called the basic 

input-output system. This first version was put to an application in 

this study. 
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The input-output system in the second version of the model is an 

extension of the basic input-output system to incorporate the income 

consumption linkage and resource use. Such a system will be called the 

extended input-output system. This version of the model is suggested 

for future application to obtain more accurate estimates of production 

and resource requirements and, more importantly, to conduct impact 

analysis in conjunction with possible multiple objectives. 

The location selected for an application of the model is the 

12-county area in Northwest Iowa (see Figure 1, p. 30). This region is 

chosen primarily because of availability of water supply data. This 

region is known to have more water-related problems than any other 

regions of Iowa (64). Annual rainfall is the lowest in Iowa, ranging 

from 25 to 28 inches per year. Ground water is available, but not in 

sufficient quantities for many uses. As a result, this region has 

received much attention. Colbert conducted a productivity analysis of 

irrigation water in Northwest Iowa (15). Babula made a detailed study 

of farm profitability of irrigation in this region (2). Rossmiller 

developed a goal programming model for comprehensive water and land 

management of the region (64). The two former studies concentrated on 

the irrigation problem as it relates to crop productivity. Rossmiller*s 

work does not deal with the intersectoral relationships in water uses. 

The objective function of the applied model was addressed in 

terms of maximization of the region's net income. It was 

assumed that water cannot be transported from one 
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subregion (county) to another subregion (county)^. Therefore, 

water and land constraints were imposed on each subregion in terms of 

availability of them for each subregion. 

Also it was assumed that all water available from the region is of 

homogeneous quality so that demand for and supply of water were not 

differentiated in terms of water quality. In other words, application 

of the model was concerned with water quantity alone. However, instead 

of being homogeneous, water is extremely heterogeneous in terms of its 

properties, its technologically permitted uses, and its economically 

demanded uses (80, p. 6). The total quantity of water may be 

abundant, but we may not have available sufficient water of 

a particular quality to satisfy a particular use demand. Therefore, 

taking water quality variations into account would significantly 

modify the results of this study's application. In the light of the 

importance of the water quality problem, a further discussion of this 

problem will be presented in the last chapter under further research 

needs. 

Since no input-output table focused on this region is available, 

it was assumed that the production structure of this region is similar 

to the overall production structure of the state as embodied in the 

input-output table of the state. Thus, the technical coefficient matrix 

In Iowa, any transfer of water beyond exempted amounts by uses from 

whatever sources to whatever locations for whatever purposes must first 

receive the approval of the state in the form of a permit from the Iowa 

Natural Resources Council (64, pp. 48-51). 
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and value added coefficients (more precisely, income coefficients) of 

the state become applicable to this region. That is, the Northwest 

Iowa economy was treated as a miniature of the whole Iowa economy. To 

the region's industrial sectors except for the crop production sector, 

the water coefficients estimated by Barnard and Dent for the state were 

applied (5, pp. 75-76). The water coefficient of crop production was 

estimated from irrigation water requirement data of the region. 

Estimation of the water coefficients of final water uses was based on 

the data provided by Rossmiller for the region (64). Estimates of final 

demands of the region, derived on the basis of the income data of the 

region, are an important part of the data series used in this study, 

because they determine the total water requirement of the region. 

The Iowa economy is expected to continue its expansion at modest 

growth rates (5, pp. 1-24). Population is expected to grow at an annual 

pace of 0.24%, employment at 0.51%, total income at 2.85%, and per 

capita income at 2.94%, respectively. Based on these growth rates, 

the State of Iowa has made long-term projections of population and 

economic growth of Iowa to the year 2020 (5, 39). Considering some 

regional variations, it has also made long-term projections of regional 

population and economic trends. Since Northwest Iowa is known to have 

been endowed with less average rainfall than any other regions of Iowa, 

the primary purpose of the application is to investigate whether or not 

the water resources of Northwest Iowa can support the region's population 

and economic growth as projected by the State of Iowa to the year 2020, 

given the water use rates of 1967 and given the production structure 
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and inter-sectoral relations as embodied in the 1967 input-output table 

1 2 
of Iowa . The base year for economic activities was set at 1975 . 

Since the applied model employs the basic input-output system, 

the underlying assumption is that a change in production creates a 

change in income, but this resulting change in income has no feed-back 

effect through the income consumption linkage on production and, hence, 

on resource uses. This effect will be simply called the income effect 

throughout this study. An increase in production entails an increase 

in income. This increase in income induces additional consumption 

which in turn induces additional production and resource uses, thereby 

increasing income again. Thus, production, resource use, income, and 

consumption form a cause and effect circle. Emphasizing this income 

effect on water uses, Timmons (78, p. 1245) states that 

Increasing demand upon available water supplies are 

unmistakable. These demands are growing at an 

increasing rate stemming (1) from our growing 

population and (2) particularly from our increasing 

per capita use of water which is about twice as 

rapid as our rate of population growth. 

Many studies report an increasing per capita water consumption stemming 

from growing affluence. For example, in California, per capita 

household water consumption stood at 140 gallons per day in 1950, but 

rose to an annual average of 172 gallons per day for the period 

1961-1965 (55, p. 124). 

^Some of the coefficients were updated (see p. 37). 

2 
The price of corn was set at that of 1978. 
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In input-output analysis, the significance of the income effect 

is frequently quantified in terms of the so-called type II multiplier 

(51, 58, 62, 84). The type II income and output multiplier measure 

the effects of a change in autonomous spending (final demand) on the 

level of income and production vdien the income effect is taken into 

account. Since the type I income and output multiplier do not take the 

income effect into account, the differences between the type II and 

type I multipliers indicate the size of the income effect. 

In his input-output study on the Iowa economy, Barnard estimated 

the two types of the output multiplier for 77 industrial sectors in 

Iowa (4, p. 55)^. According to the result, the difference between the 

type II output multiplier and the type I output multiplier ranges 

from 0.06 for the office computing and accounting machinery industry 

to 2.0 for the electric lighting and wiring equipment industry, implying 

that taking the income effect into account leads to 6 to 200 percent 

higher production estimates than those obtained when such income effect 

is left out of account. Taking the average difference at two, a 

cursory approximation is that the total water requirement would be 

doubled in Iowa when the income effect is taken into account. If so, 

this would significantly modify the results obtained from the applied 

model. 

Even though this approximation is very tentative, the difference 

between the two types of multipliers becomes an important consideration 

^Barnard used "simple" for the type I and "total" for the type II. 



www.manaraa.com

9 

in overall estimation of production and resource requirements when the 

income effect is fully counted in. In fact, as will be proved later, 

the ratio of the two types of the income multiplier is none other than 

the Keynesian multiplier. That is, the type II income multiplier is a 

constant multiple of the type I income multiplier and the constant is 

the Keynesian multiplier. 

Therefore, accuracy in estimation of production and resource 

requirements of an economy hinges much on estimation of the Keynesian 

multiplier especially when the income effect is significant. The 

Keynesian multiplier as derived in this study is the one reflecting 

(1) interdependences among producing sectors of the economy via the 

flow of intermediate goods and (2) limits of resource supplies available 

for the economy. In order to distinguish this Keynesian multiplier from 

the Keynesian multiplier of the orthodox Keynesian macro-model, it will 

be termed the input-output Keynesian multiplier labelled by M, because 

making several assumptions readily reduces it to the Keynesian 

multiplier of the orthodox Keynesian model. When a shortage of a 

particular resource dampens the multiplier effect of autonomous spending, 

the resulting modified input-output Keynesian multiplier will be called 

the resource constrained Keynesian multiplier, denoted by M. 

Development of an extended model (the second version of the model) 

begins with an extension of the basic input-output system. The 

consumption function is incorporated into the system through income. 

Two types of consumption expenditures are distinguished: consumption 

expenditures on produced goods and services and those on non-produced 
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goods and services (i.e. resource inputs). The resulting extended 

input-output system provides the input-output Keynesian multiplier 

and clarification of various multiplier processes. One feature of this 

extended input-output system is that it is expressed in terms of the 

Leontief matrix of the basic input-output system. As a result, the 

solutions for production, resource employment, and income as derived 

from the extended input-output system involve the Leontief inverse of 

the basic input-output system. Since this Leontief inverse matrix is 

available from any input-output table, to obtain such solutions does 

not require any matrix inversion process. 

Combining the extended input-output system with the resource 

supply constraints leads to the linear programming model to be 

suggested for future application. 

Based on the extended model, an impact analysis or a postoptimality 

type of analysis is presented. The analysis is intended to explain how 

a resource shortage affects the level of income, production, and resource 

employment of the economy. This idea is closely related to the concept 

of shadow price, because a shadow price of a resource constraint 

indicates the impact of a change in the constraint on the objective to 

be pursued. The resource constrained Keynesian multipliers are derived 

from the impact analysis. 

Besides the objective of maximization of income (efficiency 

objective), natural resource management frequently involves multiple 

objectives, for example, income distribution, national security, 

environmental quality, balance of payment, etc. (73, p. 40). One 
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common approach to deal with the multiplicity of objectives is to 

maximize one objective (usually the efficiency objective) subject to 

other stated objectives (34, p. 223). The impact analysis presented by 

this study is also intended to explain how such multiplicity of 

objectives constrains resource allocation decisions, especially when 

a resource shortage surges up. 

The shadow price is always relative to the objective to be pursued. 

A different objective leads to a different set of shadow prices. Thus, 

the operational meaning of the shadow price can be defined precisely 

only with reference to a particular objective. The shadow price as 

formulated from the impact analysis is expressed as a function with 

the input-output Keynesian multiplier and resource allocation 

decisions as arguments. Since the income effect can significantly alter 

the overall resource supply and demand situation and the input-output 

Keynesian multiplier reflects such income effect, the size of a shadow 

price is accordingly influenced by the size of the input-output 

Keynesian multiplier. The resource allocation decisions in what may be 

called the shadow price equation can be subject to multiple objectives. 

Organization of Report 

Chapter I introduces the problem area and outlines the specific 

objectives of the research covered in this study. Chapter II develops 

the model to be applied. Chapter III is devoted to application of the 

model and presents results of application. Chapter IV develops the 

extended model for future application. An extension of the basic 
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input-output system and multiplier analysis is presented in the first 

section of Chapter IV. The second section of this chapter includes 

formulation of the linear programming model incorporating the income 

effect. Impact analysis is presented in the last section of the 

chapter. 

Concluding remarks and further research needs are presented in 

Chapter V. Discussion of further research needs includes operational 

procedures for the future application of the extended model to 

Northwest Iowa and to the entire state. 
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CHAPTER II. FORMULATION OF THE MODEL 

Since the model to be applied includes the basic input-output system, 

a brief review of this system is presented. The input-output system 

considered in the applied model is the open system which treats final 

demand as exogenous. The closed system which treats all or a part of 

final demand as endogenous is discussed when developing the revised 

model in Chapter IV. The review is summarized from Dorfman, Samuelson, 

and Solow (17) and Chenery and Clark (12), adopting their notation and 

their convention of model presentation. This is followed by combining 

the basic input-output system and resource constraints to construct 

the linear programming model. In the initial stage, the model is 

addressed in general terms in order to facilitate clarification of the 

nature of the model and also conjoint relationships between linear 

programming and input-output analysis. This generalization is 

necessary particularly because of wide variations in the method of 

combining linear programming and input-output analysis and resulting 

possible confusions in model interpretations^. After concrete 

specification of the model with particular reference made to the case-

study area is presented, the conjoint relationships between linear 

programming and input-output analysis are discussed, with the linear 

programming model addressed in general terms. 

See Dorfman, Samuelson, and Solow (17, p. 212), Chapter IV of 

Chenery and Clark (12), Heesterman (33), Schluter and Dyer (68), and 

also Brink and McCarl (9). 
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The Basic Input-output System 

Consider an economy consisting of n producing sectors where the 

following three assumptions hold (12, p. 33); 

1. each commodity (or groups of commodities) is produced by a 

single sector^; 

2. the inputs purchased by each sector are a function of the level 

of output of that sector; and 

3. the total effect of carrying out several types of production 

2 
is the sum of the separate effects . 

Let 

= total production of sector i; 

= amount of an intermediate input produced by sector i and 

used in sector j; and 

f^ = final demand for a product produced by sector i = final 

output of sector i. 

There is no fixed rule for including (or excluding) any specific economic 

activity in the final demand category. However, major final demand items 

usually include household consumption, government expenditures, exports, 

and autonomous investment. The input-output table of Iowa developed 

by Barnard treats these items under final demand (4, pp. 70-140). 

^The input-output table of Iowa developed by Barnard divides the 

Iowa economy into 77 industrial sectors with the first sector designated 

as the livestock production sector and the second sector as the crop 

production sector (4, p. 55). 

2 
This is known as the additivity assumption idiich rules out 

external economies and diseconomies. 
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The input-output system basically hinges on two kinds of 

relationships (17, p. 230). First, the bookkeeping identity that the 

total output of any sector must be allocated as intermediate goods 

(x^j's) and final outputs (f^'s) as expressed in the following equations; 

^i = *ii + *12 + • • ^in ^i' ̂  ̂  •••' " (1) 

Secondly, the technological relationship that purchases of intermediate 

inputs by any sector from any other sector depend, via the production 

function, on the level of output of the purchasing sector as expressed 

in the following equations; 

Xj = F ( x ^ j  ,  X g j ,  . . . ,  j  '  * Q j ) )  j ~ ̂  ̂  )  • • • J  ^ (2) 

where F^ is assumed to be a homogeneous function of the first degree 

and x^j represents the total use of a primary input in sector j. 

Equation (1) can be reduced to a computationally manageable system 

by the assumption that each x^^ is a homogeneous function of output 

Xj, i.e.. 

^ij ^ij^j 

where a^^ is called the technical coefficients. Therefore, the 

Equation (1) is rewritten as: 

(I-A)x = f (3) 

where x = (x^, x^, ..., x^)', f = (f^, f^, ..., f^)• and A = ((a^^)). 

The matrix (I-A) is known as the Leontief matrix. 



www.manaraa.com

16 

One of the most important applications of input-output analysis 

is to calculate the equilibrium output levels in each sector of the 

economy. Output is in equilibrium if it is just equal to the quantity 

demanded for all purposes: consumption, investment, inventories, exports, 

and so on. If this quantity demanded for all purposes is given and 

A is known, then the equilibrium output levels are calculated from 

X  =  (I-A) " l  f  . (4) 

The inverse matrix (I-A) ̂  is referred to as the Leontief inverse. Each 

element e^^ of (I-A) ̂  indicates the total production directly and 

indirectly required from industrial sector i for each unit of delivery 

of industrial sector j to final demand. The vector x indicates the 

production requirements of the producing sectors to support exogenously 

specified final demands. Throughout this study, such x will be called 

the input-output solution. 

The existence of the Leontief inverse is crucial to the existence 

of the input-output solution. For the existence of this inverse, the 

following theorem, which will be used several times in this study, is 

available (75, p. 392): 

Theorem 1: Let M = ((mu^)) be a (nxn) matrix with m^^ < 0 for i 36 j. 

Then the following four conditions are mutually equivalent. 

(I) There exists a x > 0 such that Mx > 0 (i.e. for some f > 0, 

there exists a x > 0 such that Mx = f). 

(II) For any f > 0, there exists an x > 0 such that Mx = f. 

(III) The matrix M is non-singular and M ^ > 0. 
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(IV) All the successive principal minors of M are positive. 

In other words, 

mil m^^ 

"*21 "*22 

>  0 ,  

"*11 "*12 • 
.m 

In 

"*21 "*22 
m 
2n 

> 0 

"*nl "*n2 "*nn 

The condition (IV) is known as the Hawkin-Simon conditions. 

Notice that off-diagonal elements of the Leontief matrix (I-A) are 

non-positive. When an input-output table is made for a particular 

year, positive x and f are actually observed, so that (I-A)x = f for 

that year. Hence, condition (1) of the above theorem is satisfied. 

It follows that there exists an inverse so that for any final demand 

vector f Equation (4) holds. 

The input-output system is related to the national income account; 

final demands (f^'s) represent the output side of GNP, and primary 

input (Xgj's) the factor cost side. The interindustry sales (x^^'s) 

have no welfare significance. The primary inputs are the economy's 

only income earning inputs, and thus all value-added (GNP) is due to 

the sales of the primary inputs. The input-output system views the 

economy as a productive machine that uses up primary inputs and produces 

final outputs for consumption. 
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The Linear Programming Model 

The basic structure of the model and interpretations 

Suppose that income maximization for the region is the single goal 

of the region's economy. Income considered in this study is disposable 

income. Suppose that there are m different primary and natural 

resources the region can utilize^. Let 

= income generated per dollar of output produced by sector i 

b^j = amount of resource i required to produce one dollar output 

in sector j 

r^ = total amount of resource i required for the region's economy 

r^^ = total amount of resource i available for the region's economy 

v' = (v^, Vg, ..., v^) 

B. . = ((b. . )) = mxn matrix of b . 
ij 

r' = (r^, rg, •••} r^) 

r' = (r^, r^, ..., r^). 

We will call and b^^ the income coefficient and the resource 

coefficient, respectively. Let the k-th constraint to be on water 

aggregated over all water supply sources. Then, b^^ is the water 

coefficient of sector j. 

Combining the basic input-output system, the objective function, 

and resource constraints leads to the following linear programming 

problem: 

^The primary resource refers to such resources as labor and capital. 
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Max v'x 

subject to 

Bx < r (5) 

(I-A)x < f (6 )  

X > 0 

i.e., maximizing income subject to resource availability r and to the 

exogeneously specified final demands f. Equation (5) says that the total 

demand for each resource must be less than or equal to the total supply 

of it. Because attainable production x is constrained by the resource 

availability, the exogenously specified final demands may not be 

achieved because of resource shortages. Therefore, Equation (6) indicates 

that the realized final demands supported by the given resource supplies 

(the left-hand side) are less than or equal to the exogenously 

specified final demands f. Let's denote the realized final demands by 

A A 
f. Then, the resource requirements associated with f are given by 

where B^ is the k-th row of the resource coefficient matrix B. The water 

requirement as given by Equation (7b) represents the total requirement 

with interdependences among water uses taken into account. In the 

context of interdependences among water uses, the water requirement is 

frequently categorized under two types : the direct requirement and 

-1/» 
r = B(I-A) f . (7) 

The water requirement for f is given by 

(7b) 
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the indirect requirement (5, p. 77). 

The direct requirement of a certain water use represents the amount 

of water directly required in producing one unit of an output of the 

use. In our model, b, , represents the direct water requirement of 
KJ 

sector j which is also called water coefficient^. For example, an 

estimated 14.4 gallons of water is directly required in producing 

one dollar of livestock products in Iowa (5, p. 75). 

The indirect requirement stands for the amount of water indirectly 

required to produce other inputs that are used to produce one dollar 

value product of an output of the use. If the j-th column of the 

Leontief inverse is denoted by E., the indirect requirement is given by 
J 

Vj-\j • 

For example, an estimated 23 gallons of water is indirectly required to 

produce intermediate inputs used in the livestock sector per dollar of 

livestock products in Iowa (5, p. 78), i.e., 1.6 times as much as the 

direct requirement is indirectly required. This implies that, for 

instance, to export one dollar value of livestock product or to deliver 

the same amount to households, a total of 37.4 gallons of water is 

required in production process of livestock products in Iowa. It 

follows that a projection for the livestock water requirement should be 

Lofting and McGauhey uses the direct requirement and the water 

coefficient interchangeably (44, p. 23), while the direct requirement 
as used by Barnard is the element of B&(I-A)"1 corresponding to the 

sector. For example, the j-th element of B^(I-A)"1 represents the 
direct requirement of sector j (5, p. 77). 
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based on the total requirement with the direct and indirect requirement 

combined (i.e., 37.4 gallons) rather than merely the direct requirement 

(i.e., 14.4 gallons). Since the linear programming model comprises the 

input-output system, the water requirement reported by the model is 

this total requirement. 

Specification of the constraints 

In applying the model, use was made of the 13 industrial sector 

input-output table of Iowa Barnard developed (4, p. 34). The first 

sector is the livestock agricultural sector and the second sector the 

crop production sector. Table 6 of the next chapter enumerates the 

13 sectors of the input-output table. Hence, the part of the model 

for the input-output system consists of 13 equations (i.e., n=13) with 

the 13x13 technical coefficient matrix (i.e., A matrix). 

The case-study area comprises 12 counties of Northwest Iowa. The 

name of each county is given in Table 1 of the next chapter. In 

specifying the resource constraints, the following assumptions are made: 

1. There exists an upper limit on each county's water availability 

from a particular water supply source and it is not augmented 

by water transportation; 

2. All water available in the region is of the same quality; 

3. Water supply sources of each county are independent of each 

other^; 

^This may not be true in reality. For instance, tapping surficial 
aquifers may reduce adjacent stream flow. 
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4. All the other resources except for water and land do not 

constrain each county's economic growth^; 

5. Land availability constrains, if it does, crop production only; 

6. The water coefficient of a particular producing sector except 

for the crop production sector is the same over all counties; 

and 

2 
7. Only corn production is irrigated . 

Since the primary concern of the model application is with water 

availability for the region's economic growth, specification of the 

resource constraints is focused on water demand and supply. The 

following notation will be used (the superscript refers to county); 

x^ = total production of industrial sector i in county k, 

i = 1, 2, ..., 13, k = 1, 2, 12; 

x^^ = non-irrigated corn production in bushel; 

x^y = irrigated corn production in bushel; 

k 
Xg^ = production of other crops (in dollar); 

3 
w^ = water coefficient of industrial sector i ; 

^abor supplies may constitute an important constraint. However, 

the economic growth projections made by the State of Iowa for this 

region have already taken labor supplies into account (5, pp. 1-13). 

2 
The other crops, mainly soybeans, are known to be more tolerant of 

drought condition, except for sandy soils (64, p. 374). 

3 
To avoid clutter, the water coefficient is labelled by w. rather 

than b^j^ as in the previous section. 
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= irrigation water requirement of corn per bushel ; 

= total water use of county k; 

f^ = final use of water: 
w ' 

1^ = land requirement of non-irrigated corn production per bushel; 

1^ = land requirement of irrigated corn production per bushel; 

= total land area available for crop production; 

= total land area available for irrigation. 

Water supply data used in this study are based on the preliminary 

report on availability of water resources of Northwest Iowa prepared 

by the Iowa State Water Resources Research Institute. The report 

identifies seven water supply sources in Northwest Iowa. Using the 

notation of the report, they are; 

GW^ = the northwestern bedrock aquifer system that consists 

primarily of the Dakota Sandstone formation; 

GW2 = the surficial alluvial aquifer associated with the Missouri 

River flood plain; 

GW^ = other surficial aquifers including the one associated with 

the Big Sioux River; 

SWj^ = the natural streamflow in the interior streams; 

SWg = Missouri River; 

SW^ = Big Sioux River; 

SW^ = reservoir storage which augments natural streamflow. 
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As a result of this breakdown, there are three ground water sources and 

four surface water sources available for the region^. Let 

Ic 
GWj^ = amount of water used from ground water supply source i; 

SW^ = amount of water used from surface water supply source i; 

= total supply of water available from ground water supply 

source i; 

SW^ = total supply of water available from surface water supply 

source i. 

Since individual water and land availabilities are imposed on each 

county, each county's production activities are constrained by its own 

water and land availability. The total amount of water used in 

county k is the sum of the irrigation water for corn production, the 

amount of water used by the other industrial activities, and final 

water uses in the county. Hence, 

= w^x^ + WgXg^ + w^Xg + .. + w^gX^g + f^, k = 1, ..., 12 (8) 

The total amount of water used in county k consists of water supplied 

from each source. Hence, 

= GW^ + GW^ + GW^ + SW^ + ... + SW^, k = 1, ..., 12 (9) 

The amount of water that can be supplied from each water supply source 

is limited by the availability from each source: 

^Not all seven water supply sources are available for each county 
(see Table 16). 
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GW^ < GW^ , k = 1, 12, i = 1, 2, 3 (10) 

SW^ < , k = 1, 12, i = 1, 2, 3, 4 (11) 

Irrigation is limited by availability of land for irrigation. Corn 

production is related to land through the land coefficient. Therefore, 

we have 

,  k  =  1 ,  . . . .  1 2  ( 1 2 )  

The total corn production is limited by availability of land for corn 

production. Therefore, 

lb*2b + Lg , k = 1 12 (13) 

Crop production consists of three activities; irrigated corn 

production, non-irrigated corn production, and production of other 

crops. Hence, 

^2 = + *2b) + *2c ' k = 1, ..., 12 (14) 

where p^ is the price of corn per bushel. Production of each product 

by each county should add up to the total regional production of the 

product; 

1 2  1 2  
^i = Xi + Xi +...,+ Xi , i = 1, ..., 13 (15) 

In the light of overall growth in every economic sector of 

Northwest Iowa as projected by the State of Iowa (see next section), it 

is assumed that each county's production of each product in the year 
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2020 be no less than that of 1975. Therefore, 

' k = 1, 12, i = 1, 13 (16) 

where is the production level in 1975 of industrial sector i in 

county k. 

In the input-output system, the costs of every production activity 

should be addressed in terms of intermediate inputs and primary and 

natural resources. The water for most practical uses is in fact 

the produced water, produced from natural water. Water production 

involves pumping, treating, and delivering. Because of inadequate data 

on water production costs in terms of intermediate inputs and resources 

required in the process, an ad hoc measure is taken by this study to 

put monetary water supply costs directly into the objective function. 

In application, the objective function presented in the previous section 

is modified as follows: 

7 12 

max v'x-SEc. (17) 

i k ^ 

where c^ stands for the cost of supplying water from water supply source 

i of county k. 

Thus, the applied model consists of a total of 317 equations; the 

objective function of Equation (17), the basic input-output system of 

Equation (3), the resource constraints of Equations (8) - (13), 

definitional Equations (14) and (15), and the minimum production 

requirements of Equation (16). 
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Conjoint Relationships Between Linear 

Programming and Input-output Analysis 

Even though the exogenously specified final demands f may not be 

achieved due to the resource constraints, it is simple to show that 

a solution for x that completely satisfies the given level of final 

demands is also the solution that potentially maximizes income. In 

other words, the input-output solution leads to a potential maximum 

income, even though it may not be feasible with respect to resource 

availability. Denoted by x*, the input-output solution is 

characterized by 

X *  = (I-A) " ^ f .  

Suppose that x is a linear programming solution which is attainable 

from the given resource supplies. Then, 

v'x* - v'x = v'(x* - x) = v'[(I-A) ̂ f - x] . 

Since x is feasible, 

(I-A)x < f 

But (I-A) ̂  > 0 by Theorem 1. Hence, 

A -1 
X  < (I-A) f  

i.e., 

(I-A)"^f - X > 0 . 
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Therefore, 

v'x* > v'x . QED. 

The total resource requirements associated with the input-output 

solution X*, denoted by r*, is given by 

r* = Bx* = B(I-A)"^f . (18) 

Depending on the resource availability, 

r* I r . 

If r* > r, this implies that the input-output solution is not 

sustainable with respect to the resource availability and accordingly 

the given bill of final demand cannot be attainable due to resource 

constraints. 

Since input-output analysis that consists of the basic input-output 

system does not explicitly deal with the supply side of resources, using 

the analysis amounts to assuming implicitly that there exist resource 

supplies sufficient enough to cover its resulting solutions. That is, 

input-output analysis determines only the demand side of resources which 

may not be feasible with respect to availability of them. Since the 

above formulated linear programming model comprises the input-output 

system and the resource constraints, the model reports (1) the effective 

resource demand checked by resource availability but integrating both 

the direct and indirect requirements arising from interdependences 

among resource uses and (2) the shadow price arising from competition 

among resource demands over fixed resource supplies. 
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CHAPTER III. APPLICATION OF THE MODEL TO NORTHWEST IOWA 

The case-study location selected for an application of the model is 

the 12-county area of Northwest Iowa shown in Figure 1. This region 

is bounded on the north by Minnesota and the western border is formed 

by the Missouri and Big Sioux Rivers which separate Iowa from Nebraska 

and South Dakota. 

Table 1 lists the names of the counties of the study area and 

describes the status of each county in the region in terms of population 

and total income in 1975. The total population of the region was 

295,614 people in 1975, which is about 10 percent of the total population 

of the state. The region's total income, 1,043 million dollars, was 

about 7.5 percent of the total income of the state in 1975. Woodbury 

County, whose western boundary is bordered by the Missouri River, is by 

far the largest county in the region in terms of population and income. 

This county harbors 36.8 percent of the region's total population and 

accounts for 36 percent of the region's total income generated in 1975. 

Sioux City, the largest town in the region, is located at the 

northwestern corner of Woodbury County. Only two cities in the region 

have a population in excess of 10,000; Sioux City with 85,925 and 

Spencer, in Clay County, with 10,278 (64, p. 281). The second largest 

county in the region in terms of population and income is Sioux County 

on the border of the Big Sioux River and the smallest county is Ida. 

Table 2 describes income sources of each county in 1975. This 

shows that agriculture is the major industry in all counties except 

for Woodbury County where agriculture is a minor industry. 
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Figure 1. Study area in Northwest Iowa 
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Table 1. Population and total income of Northwest Iowa in 1975* 

County Population Income 

($ million) 

Buena Vista 21,614 83 

Cherokee 17,805 61 

Clay 19,590 75 

Dickinson 13,735 54 

Ida 9,344 33 

Lyon 12,705 44 

O'Brien 17,375 57 

Osceola 7,231 27 

Plymouth 24,133 75 

Sac 14,712 58 

Sioux 28,600 100 

Woodbury 108,770 376 

Region 295,614 1,043 

^Source (39). 

Non-agricultural activities of the region are concentrated on Woodbury 

County and income generated from them are much larger than total income 

of any other county. As a result, for the region as a whole, 

manufacturing, trade, and services exceed agriculture as the sources 

of large income. 
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Table 2. Total income of Northwest Iowa by types of income sources in 1975^ 

County Ag. Mi. Cn. Ma. Tn. Cm. Td.b F.I.R.^ Sv. 

Buena Vista 23 

Cherokee 12 

Clay 20 

Dickinson 14 

Ida 10 

Lyon 16 

O'Brien 13 

Osceola 9 

Plymouth 16 

Sac 24 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

2 

4 

5 

3 

2 

2 

2 

1 

4 

3 

16 

14 

13 

15 

5 

7 

10 

6 

9 

8 

($ million) 

4 

2 

3 

2 

1 

1 

2 

1 

1 

1 

2 

2 

3 

1 

1 

1 

3 

0 

3 

2 

18 

11 

16 

10 

7 

8 

13 

6 

23 

10 

4 

2 

4 

2 

2 

3 

2 

1 

3 

2 

14 

14 

11 

7 

5 

6 

12 

3 

16 

8 

^Source (39). 

= agriculture; Mi. = mining; Cn. = construction; Ma. = manufacturing; Tn. = transportation 

and warehousing; Cm. = communication and utilities; Td. = trade; F.I.R. = finance, insurance, and 

real estate; Sv. = service. 
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Table 2. Continued 

County Ag. Mi. Cn. Ma. Tn. Cm. Td. F.I.R. Sv. 

($ million) 

Sioux 25 0 6 25 2 2 17 4 19 

Woodbury 11 1 25 95 16 19 91 30 87 

Region 193 1 59 224 36 39 230 59 202 
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Vigorous growth of non-agricultural production has been projected 

by the State of Iowa to the year 2020, as indicated by Table 3. 

Noticeable growth rates in terms of income are expected in manufacturing, 

communication, and service industry with 5.82, 9.28, and 7.36 percent 

per annum, respectively. A five percent annual growth rate is imposed 

on construction, utilities, and trade between 1975 and 2020. 

Agriculture is expected to grow at a moderate pace of 1.68 percent per 

annum. All these boil down to the annual overall growth rate of about 

five percent in the region's economy in terms of income between 1975 

and 2020. 

The projection of populations in Northwest Iowa made by the State 

of Iowa is detailed in Table 4. The total population of the region 

in the year 2020 is projected at 341,260, vAiich is a 15.4 percent 

increase over the population of 1975. This amounts to a 0.34 percent 

annual growth in population. The decrease in rural farm population 

in all counties reflects the historic declines in agricultural 

employment. 

Given these projections of economic and population growth of 

Northwest Iowa, the big step in application is to summarize them in 

terms of final demands and final uses of water of the region. Then 

application is geared to investigating, using the model developed in the 

previous chapter, whether or not the region can afford such growth 

projections with the region's endowment of the water resources which is 

known to be less favorable than in any other regions of Iowa, given 
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Table 3. Industrial growth of Northwest Iowa projected by the State of Iowa in terms of income 

between 1975 and 2020 

1975 2020 Average annual 

Industry 
region^ 

(1) 

($ million) 

state'' 

(2) 

($ million) 

ratio 

(l)/(2) 

(%) 

region^ 

($ million) 

growth rate from 

1975 to 2020 

(%) 

Agriculture 193 1,635 11.7 307 1.68 

Mining 1 50 2.0 6 2.78 

Construction 59 786 7.5 176 4.94 

Manufacturing 224 3,294 6.8 718 5.82 

Transportation 36 481 7.5 107 3.72 

Communication 21 209 10.0 112 9.28 

Utilities 17 175 9.7 49 4.84 

Trade 230 2,330 9.9 699 4.83 

Finance, insurance, 

and real estate 59 727 8.1 246 7.36 

Services 202 2,134 9.5 923 8.15 

Region total 1,042 3,343 4.9 

^Source (39). 

^Source (5, pp. 23-28). 
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Table 4. Future total urban, rural farm and rural nonfarm populations in Northwest lowa based on 

the projection made by the State of Iowa for the years 1980, 2000 and 2020^ 

Total urban Rural farm Rural nonfarm 

1980 2000 2020 1980 2000 2020 1980 2000 2020 

Buena Vista 15,090 16,520 16,770 4,770 3,930 3,300 1,440 1,700 1,850 

Cherokee 10,450 11,260 12,200 4,440 3,760 3,300 1,470 1,820 2,240 

Clay 13,680 15,100 15,340 4,080 3,660 3,300 1,480 1,820 2,000 

Dickinson 10,270 12,680 13,290 2,840 2,470 2,100 1,670 2,320 2,680 

Ida 5,090 5,440 5,830 3,300 2,780 2,400 340 470 610 

Lyon 6,870 8,930 11,630 5,400 4,260 3,410 750 1,080 1,520 

O'Brien 12,140 13,950 14,930 4,850 3,960 3,300 1,010 1,410 1,740 

Osceola 4,720 5,920 7,310 3,270 2,700 2,250 730 1,160 1,700 

Plymouth 14,210 16,500 18,570 7,760 6,360 5,100 1,980 2,390 2,790 

Sac 9,190 10,060 11,080 4,830 3,970 3,300 1,090 1,390 1,740 

Sioux 20,420 25,620 28,770 8,310 6,290 4,500 1,390 1,850 2,130 

Woodbury 99,190 110,630 118,380 6,320 5,560 5,120 3,090 3,950 4,750 

Region 221,320 252,610 274,130 60,170 49,700 41,380 16,440 21,360 25,750 

^Source (76). 
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1. the water use rates of 1967^, and 

2. the production structure and inter-sectoral relations as 

embodied in the 1967 input-output table of Iowa, with the 

2 
base year set at 1975 . 

Economic Data Set 

Coefficients 

Four sets of coefficient data serve as inputs into the application 

of the model: technical coefficients (a^^'s), income coefficients 

(v\'s), water coefficients (w^'s), and land coefficients (l^'s). 

The technical coefficient matrix (matrix A) was derived from the 

13x13 input-output table of Iowa made by Barnard (4, p. 34). Each 

column of the table was divided by gross production of the sector 

corresponding to the column to give a column of technical coefficients 

of the sector. The results are presented in Table 5. The income 

coefficient of a sector was formed by dividing disposable income accrued 

to that sector by gross production of the sector. The resulting income 

coefficients are listed in Table 6. 

The pattern of utilizing water is unlike that for other natural 

resources. A given amount of water is not always completely 'consumed' 

^Where projected data were available, water use rates were updated 

to the year 2020. For example, water coefficients for crop production 

were based on yield data projected for 2020. Estimation of final water 
uses also made use of water use rates projected for 2020. 

2 
The price of corn was set at that of 1978, which was $2.04 dollars 

per bushel (40). 
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Table 5. Technical coefficient matrix (matrix A) 

1* 2 3 4 5 6 7 8 9 10 11 12 13 

0 .0936 0 .0493 0 .0000 0 .4009 0 .0001 0. 0000 0. 0000 0 .0000 0 .0000 0 .0000 0 .0000 0 .0000 0 .0003 

0 .2030 0 .0500 0 .0041 0 .0639 0 .0012 0. 0001 0. 0001 0 .0009 0 .0001 0 .0001 0 .0013 0 .0004 0 .0007 

0 .0056 0 .0094 0 .0137 0 .0021 0 .0038 0. 0019 0. 0019 0 .0201 0 .0377 0 .0371 0 .0034 0 .0515 0 .0121 

0 .1051 0 .0010 0 .0020 0 .1497 0 .0073 0. 0020 0. 0027 0 .0020 0 .0020 0 .0017 0 .0024 0 .0011 0 .0085 

0 .0120 0 .0692 0 .0500 0 .0414 0 .2943 0. 0420 0. 0515 0 .0515 0 .0434 0 .0080 0 .0269 0 .0120 0 .0414 

0 .0002 0 .0086 0 .0000 0 .0 0 .0 0. 0555 0. 0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0004 

0 .0003 0 .0011 0 .0425 0 .0006 0 .0013 0. 1614 0. 1459 0 .0295 0 .0075 0 .0039 0 .0009 0 .0001 0 .0129 

0 .0017 0 .0054 0 .2687 0 .0172 0 .0160 0. 1734 0. 1463 0 .2841 0 .0179 0 .0009 0 .0029 0 .0016 0 .0240 

0 .0189 0 .0083 0 .0394 0 .0361 0 .0231 0. 0206 0. 0163 0 .0264 0 .0812 0 .0165 0 .0097 0 .0025 0 .0107 

0 .0040 0 .0034 0 .0072 0 .0073 0 .0118 0. 0102 0. 0123 0 .0194 0 .0165 0 .1556 0 .0278 0 .0130 0 .0292 

0 .0220 0 .0221 0 .0757 0 .0299 0 .0258 0. 0421 0. 0396 0 .0273 0 .0265 0 .0074 0 .0168 0 .0057 0 .0269 

0 .0202 0 .1717 0 .0139 0 .0070 0 .0226 0. 0124 0. 0164 0 .0143 0 .0400 0 .0181 0 .0700 0 .0962 0 .0404 

0 .0132 0 .0340 0 .0435 0 .0214 0 .0315 0. 0320 0. 0334 0 .0236 0 .0384 0 .0453 0 .0581 0 .0308 0 .0336 

^1 = livestock; 2 = crop production; 3 = construction and mining; 4 = food and kindreds; 
5 = other non-durables; 6 = farm machinery; 7 = other machinery; 8 = other durables; 

9 = transport and warehousing; 10 = conmunication and utilities; 11 = trade; 12 = finance, 

insurance and real estate; 13 = services. 
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Table 6. Water and income coefficients of Iowa by types of industry' 

Industry Water coeff.(w.) 

(gal. per $)^ 

Income coeff, 

(Vi) 

Agriculture 

livestock 

crop production 

Construction and mining 

Manufacturing 

food and kindred prods, 

other non-durables 

farm machinery 

other machinery 

other durables 

Transport 

Communication and utilities 

Trade 

Finance, insurance and 

real estate 

Service 

14.4354 

4.1768 

1.3084 

1.2731 

4.6584 

0,7808 

0.4042 

2.4211 

0.2746 

13.1994 

0.4583 

0.0316 

0.7536 

0.2526 

0.1563 

0.3785 

0.0913 

0.1888 

0.2653 

0.3969 

0.2995 

0.4833 

0.2297 

0.5390 

0.1475 

0.6768 

Computed from (4, p. 34) and (5, pp. 73-74) 
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by each of its uses but may be reused several times. In the wake of 

one use of water, a return flow or discharge frequently takes place. 

If this return flow does not create pollution problems and if it can 

be reused for other purposes, the relevant measurement of water use 

on which the concept of water productivity is based, is the reduction 

in available supply incurred from the use, termed consumptive use^. 

2 
This study considers only consumptive water uses for industrial uses . 

In their water study for Iowa, Barnard and Dent estimated 

consumptive water use of each industrial sector (5, p. 73). Dividing 

consumptive water use of each sector by gross production of the 

corresponding sector provides the water coefficients (Table 6). 

^Let 

= the amount of intake by use i 

= the fraction of return flow from use i 

TW^ = the feasible total productive use of 

f^ = value of marginal productivity of water in use i. 

Then, 

T"i "i + ̂ i^i + ̂ i+l^i^i "•• ^i+2^i+l^i\ 

The total value of marginal productivity of water taken by use i 
denoted by TVMP^, can be expressed as 

^'^^i ^i ^i+l^i ^i+2^i^i+l ' 

Allocation efficiency requires (31, pp. 8-12) 

TVMP. = TVMP. = TVMP, = 
1  J  K  

2 
Due to data availability, final water uses (non-industrial water 

uses) are considered in terms of withdrawal (see next section). 
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According to the results, the livestock sector has the highest water 

requirement per dollar of output. It is followed by the communication 

and utility sector. The high water requirement in this sector is 

primarily due to utility production. According to Barnard and Dent, 

the utility sector is by far the largest water user in Iowa in terms 

of gross water use with 1,364 gallons per dollar of output. A large 

amount of discharge after use moderates consumptive water use of this 

sector to the level of 19 gallons per dollar of output (5, p. 76). 

The water coefficient of crop production as estimated by Barnard 

and Dent is fairly modest with about 4 gallons per dollar of overall crop 

production. For example, in California where much of crop production 

depends on irrigation, the water coefficient of cotton production is 

reported at 2,986.4 gallons per dollar and that of other crop 

production at 2,251.3 gallons per dollar (44, p. 22)^. The low figure 

of the water coefficient of crop production estimated by Barnard and 

Dent is based on 1.094 acre-feet of water applied per irrigated acre 

which is the average value for the whole state where irrigation is 

only supplemental for crop production. Historically, by far the 

greatest use of water for irrigation has been in western and 

northwestern Iowa (29, p. 1). Halberg, Koch and Horick concluded in 

their report that this trend would continue in the future (29, p. 45). 

Table 7 demonstrates a greater interest in irrigation in western and 

northwestern Iowa than in other regions. 

^In terms of acre-feet, the numbers are 9,165 and 6,909 acre-feet, 

respectively. One acre-feet of water is equivalent to 325,851 gallons 
(37, p. 8). 
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The water coefficient of crop production quoted in Table 6 from 

Barnard and Dent needs to be modified to take into account the 

expected increase in irrigation in the region. Following Rossmiller 

(see the last section of Chapter II), it was assumed that only corn 

production is irrigated. Estimation of water coefficients of corn 

production is based on corn yields and on irrigation water requirements 

for corn. 

Table 8 reproduces average irrigation water requirements of corn 

per acre for various return periods estimated by Rossmiller. An eleven-

inch requirement for a 2 year return period means that eleven inches 

of irrigation water are required per acre in every two years. It is 

only twice in 100 years that the weather is so dry as to require 

19.1 inches of irrigation water per acre for corn production. Calculating 

the average annual irrigation water requirement by using each return 

period as weight gives 11.16 inches per acre per year^. Tables 9 and 

10 show fairly wide variations in projected corn yields among counties, 

between years, and between irrigation and non-irrigation. The non-

irrigated com yield projected for 2020 ranges from 164 bushels per acre 

of Lyon County to 201 bushels of Ida County. Substantial increases in 

yields are expected over years. Between 1980 and 2020, com yields are 

expected to rise from the range of 108-132 bushels to the range of 

164-201 bushels in non-irrigated land and from the range of 155-189 

^The expected value of irrigation water requirement is calculated by 

11/2 + 14.6/5 + 16.4/10 + 18/25 + 19.1/50 = 11.16. 
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Table 7. Irrigation permits under Iowa water rights system, 1976* 

Acres Amount granted 

irrigated wells 
1 

reservoirs 

(acre feet of water) 

streams 

Western basin 70,651 72,522 5,422 9,462 

Southern basin 17,280 12,242 125 6,942 

Des Moines basin 12,944 7,257 5,163 8,490 

Skunk basin 3,583 2,784 161 396 

Iowa-Cedar basin 16,976 11,585 4,933 5,553 

Northeast basin 2,150 1,120 587 1,438 

^Source (5, p 57). 

Table 8. Average 

various 

gross irrigation water requirements for corn for 

return periods^ 

Return period 
years 

Irrigation requirements^ 

inches 

2 11.0 

5 14.6 

10 16.4 

25 18.0 

50 19.1 

^Source (64, p. 525). 

^Assuming unlimited water after tasseling for a soil with 10.4 
inches of available water in the root zone. 
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Table 9. Rossmiller's projected non-irrigated corn yields in Northwest 

Iowa for the period 1980 to 2020, bushels per acre of Class I 

land^ 

County 1980 2000 2020 

Buena Vista 132 166 200 

Cherokee 126 159 192 

Clay 128 161 194 

Dickinson 118 148 179 

Ida 132 166 201 

Lyon 108 136 164 

O'Brien 125 158 191 

Osceola 119 150 181 

Plymouth 109 138 166 

Sac 126 159 192 

Sioux 114 143 173 

Woodbury 116 146 176 

^Source (64, p. 415). 
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Table 10. Rossmiller's projected irrigated corn yields in Northwest 

Iowa for the period 1980 to 2020, bushels per acre of Class I 
land& 

County 1980 2000 2020 

Buena Vista 189 223 258 

Cherokee 182 214 248 

Clay 184 217 250 

Dickinson 169 199 231 

Ida 189 223 258 

Lyon 155 182 210 

O'Brien 179 212 245 

Osceola 171 202 233 

Plymouth 157 185 214 

Sac 182 214 248 

Sioux 163 193 223 

Woodbury 166 196 226 

^Source (64, p. 415). 



www.manaraa.com

46 

bushels to the range of 210-258 bushels in irrigated land. Also, 

irrigation is shown to boost yields a great deal; irrigation is expected 

to raise corn yields from the range of 164-201 bushels to the range of 

210-258 bushels per acre in 2020. 

Considering the wide variations of corn yields among counties, 

the water coefficient of irrigated com production of a county was 

formed by using the following formula: 

Water coefficient = 11.16 x 325,851/(12 x yield) 

where 325,851/12 is the conversion rate from acre-inch to gallon. The 

resulting water coefficients for 12 counties are reported in Table 11. 

If we set the corn price equal to 2.04 dollars per bushel, which was 

quoted for 1978, the water coefficient of com ranges from 575.8 gallons 

per dollar of Buena Vista County to 707.4 of Lyon County. These figures 

are a great deal higher than the water requirement of 4 gallons per 

dollar estimated by Barnard and Dent for crop production, but 

substantially lower than that of crop production in California mentioned 

earlier. Water coefficients of corn production far exceed those of 

other industrial production; the water coefficient of corn production of 

Lyon County is nearly 50 times of the water coefficient of livestock 

production \Aiich is ranked top in the water coefficient list of Table 6, 

In their 1976 water study, Barnard and Dent estimated the domestic 

("household" by their terminology) water use raté at 53 gallons per 

capita per day in Iowa (5, p. 69). A rough approximation based on this 
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Table 11. Water and land coefficients of corn in Northwest Iowa, 2020 

County Water coeff. Land coefficient 

(gal. per bushel) irrigated non-irrigated 

(acre per million bushel) 

Buena Vista 1174.6 3876.0 5000.0 

Cherokee 1221.9 4032.3 5208.3 

Clay 1212.2 4600.0 5154.6 

Dickinson 1311.9 4329.0 5586.6 

Ida 1174.6 3876.0 4975.1 

Lyon 1443.1 4761.9 6097.6 

O'Brien 1236.9 4081.6 5235.6 

Osceola 1300.6 4291.8 5524.9 

Plymouth 1416.1 4672.9 6024.1 

Sac 1221.9 4032.3 5208.6 

Sioux 1358.9 4484.3 5780.3 

Woodbury 1340.9 4424.8 5681.8 
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figure and on the average 11.16 acre-inches of annual irrigation water 

requirement shows that the irrigation water sprinkled over 650 acres 

of corn land is large enough to supply a city of 10,000 population 

year around in Iowa. As mentioned before, the region has only two 

cities with population exceeding 10,000. This tells us that a 

substantial increase in irrigation could impose a grueling burden on 

the region's water resources. 

Combining the 12 water coefficients of corn production listed in 

Table 11 and the 12 water coefficients (excluding that of crop 

production) listed in Table 6 gives a total of 24 water coefficients 

as input into the model. 

Since the reciprocal of a corn yield indicates the land requirement 

per unit of corn produced, it is used as the land coefficient of corn 

that relates corn production activities to land availability. Table 11 

reports the land coefficients by types of corn. Since non-irrigated 

corn yields are lower than irrigated com yields, land coefficients of 

non-irrigated corn are higher than those of irrigated com. 

Constraints 

There are five sets of the constraints in the model: final demands, 

final water uses, land availability, water supplies, and minimum 

production requirements. 

The set of final demands and final water uses are the most 

important part of the data series for application since they determine 

the level of the region's production and, thereby, determine the total 



www.manaraa.com

49 

water requirement of the region. The concrete contents of the region's 

economic activities in terms of household consumption, government 

activities, exports, and investment, boil down into final demands. Final 

uses of water constitute minimum water requirements set aside for 

population. 

In his input-output study on the Iowa econony, Barnard estimated 

state final demands in 1975 that covers household consumption, 

government expenditures, exports, and investment (4, p. 61). From the 

estimates he calculated state production requirements to support the 

final demands. These state production requirements are reproduced in 

Table 12. 

Such final demand data were not available for Northwest Iowa. 

Income data were available for this region, but in terms of 10 industrial 

sectors rather than 13 industrial sectors of the input-output table used 

in this study (see Table 3). Hence, the region's final demands were 

estimated from both state production data and region's income data as 

explained below. 

The input-output assumption of a constant income coefficient (v^) 

leads to proportionality between income accrued to sector i and 

gross production of that sector x^, i.e., 

Y. = v.x. . 
X  I X  

This proportionality gives the following relation between regional 

production and state production; 

\ = (Yi/YS)x* (19) 
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Table 12. Estimated gross production and final demands for the years 1975 and 2020 (in 1975 dollars) 

state' 

1975 

region 
2020 region 

gross final 
production (x) demand (f) 

($ million) 

Agriculture 

livestock 

crop production 

Construction and mining 

Manufacturing 

food and kindreds 

other non-durables 

farm machinery 

other machinery 

other durables 

Transportation 

3,304 

1,968 

1,681 

4,790 

1,976 

861 

1,428 

2,210 

847 

717 

380^ 

121 

326 

134 

59 

97 

150 

64 

1,141 

604 

367 

1,044 

431 

188 

312 

412 

189 

586 

271 

257 

750 

60 

171 

190 

111 

38 

^Source (4, p. 61). 

^Computed from (82, p. 11-13). These numbers are for 1974. 
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Table 12. Continued 

1975 
state' region 

2020 region 

gross 

production (x) 
final 

demand (f ) 

Communication and utilities 

Trade 

Finance, insurance, and 

real estate 

Services 

811 

2,753 

2,656 

1,879 

($ million) 

80 

273 

215 

179 

339 

828 

897 

816 

188 

638 

543 

575 
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where 

= income accrued to sector i of the region; 

Y^ = income accrued to sector i of the state; 

= production of sector i of the region; 

x^ = production of sector i of the state. 

Equation (19) says that if production of a certain sector is known at 

state level and if income accrued to that sector are known both at 

the state and regional level, then production of that sector at the 

regional level can be estimated by scaling down production at the state 

level with the scaling-down factor determined by the sectoral income 

ratio (the ratio of regional income to state income that is accrued to 

the sector). The sectoral income ratio (Y^/Y?) is calculated sector 

by sector in Table 3. 

Since agricultural production data of the region are available 

from the Census of Agriculture (82), Equation (19) was used for 

estimating non-agricultural sector's production of the region. For 

example, Table 3 shows that income from the manufacturing sector of 

the region is only 6.8 percent of that of the state. Since the 

manufacturing sector is subdivided into five subsectors in the input-

output table (food and kindreds, other non-durables, farm machinery, 

other machinery, and other durables), each sector's production at the 

state level was uniformly scaled down by multiplying 6.8 percent to 

get an estimate of regional production of that sector in 1975. The 

same procedure gives estimates of other non-agricultural sector's 
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regional production in 1975^. The results are reported in the second 

column of Table 12. 

The projection of the region's production in the year 2020, 

reported in the second to the last column of Table 12, was formed by 

applying the region's sectoral income growth rates (see Table 3) to the 

2 
region's 1975 production estimates . 

Then, estimates of final demands of the region in the year 2020 

were obtained, according to Equation (3), by multiplying the projected 

production of the region by the technical coefficient matrix of 

Table 5. The last column of Table 12 reports the results. 

These projected final demands serve as the target level of final 

demand to be achieved in 2020. The final demand for food is expected 

to form a substantial part of the demand for manufacturing goods in the 

year 2020 by 750 million dollars. To satisfy this, a 3.2 times 

expansion of the food processing sector is required between 1975 and 

2020. Agricultural products are expected to account for nearly one-fifth 

of the total amount of final demands which stands at 4,378 million 

^In income data, mining and construction are separated, while they 

are integrated in the input-output table. In this case, the state 

production was split up first according to the income share of each 

sector in the combined income. For example, state production of the 

mining sector was estimated by 1,681,389 x 50/(786+50) and that of the 

construction sector by 1,681,389 x 786/(786+50). Then the income ratio 

was applied to get estimates of regional production. The same procedure 
was used for the communication and utility sector. 

2 
Since income coefficients are constant, an increase in income is 

gained through increased production. 
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dollars in 2020. As a result, manufacturing and agriculture are 

expected to still be the leading industries in the region. However, 

expected high demands for services (trade, finance, insurance, real 

estate, and other services) require a rapid expansion in these sectors, 

nearly a four-fold increase over the period. On the average, non-

agricultural sector's expansion is noticeable, reflecting the projected 

vigorous growth of income generated from these sectors. 

Projection of non-industrial water requirements (final uses of 

water) was based on the population data already presented in Table 4 

and the average final water use rates presented in Table 13. Three 

different final water use rates were considered in terms of per capita 

use^. The urban water use rate was set 30 percent higher than the 

rural non-farm water use rate to reflect water losses connected with 

water distribution system and for other public use such as street 

2 
washing, firefighting, municipal parks, swimming pools, etc. (5, p. 69) . 

Multiplying populations of Table 4 by corresponding final water use 

rates of Table 13 provides projected final water use requirements of the 

region. Table 14 summarizes the results county by county for the 

^The rural water use rates in Table 13 may include a small part 

of non-domestic uses such as water for livestocks (64, pp. 486-488). 

For simplicity (and to hedge against possible higher water use rates 

in the future), it is assumed that the rural water use rates represent 
purely final uses. 

2 
Adopting the same procedure, Barnard and Dent came out with 

54 gallons per capita per day for the domestic ("household" in their 

terminology) water use rate of Iowa (5, p. 69). Including industrial 
and commercial uses, the urban water use rates estimated by Rossmiller 

are much higher than the figures for the urban water use rate as given 

in Table 30 (see 64, p. 488). 
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Table 13. Estimated final water use in Northwest Iowa 

1980 2000 2020 

(gallons per capita per day) 

Rural farm^ 50 60 70 

Rural non-farm^ 70 80 90 

Urban^ 91 104 117 

^Source (64, p. 488). 

In accordance with procedures adopted by Barnard, it is assumed 

that urban population use is 30 percent greater than rural non-farm 

water use. 

years 2000 and 2020. It shows that a total of about 37 million gallons 

of water should be set aside daily for population of the region in 2020 

prior to industrial uses. About 40 percent of this total goes to 

Woodbury County which has the largest population in the region. 

Even though more of Iowa's farm land is expected to come under 

irrigation in the future, it is difficult to assess the extent and 

speed of expansion of irrigation due to a number of factors which resist 

easy prediction; future weather variability, availability of water, 

demands for crops, the long-term economic feasibility of irrigation, etc. 

Because of the difficulty in predicting the future of irrigation 

in Northwest Iowa, some upper and lower limits were established on how 

much land will be irrigated and how much water will be applied during 
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Table 14. Projected final water use requirements (£^) in Northwest Iowa 

County 2000 2020 

(1,000 gallons per day) 

Buena Vista 2,090 2,360 (861,400)* 

Cherokee 1,543 1,905 (695,325) 

Clay 1,936 2,206 (805,190) 

Dickinson 1,653 1,943 (709,195) 

Ida 771 905 (330,325) 

Lyon 1,271 1,737 (643,005) 

O'Brien 1,802 2,135 (779,275) 

Osceola 871 1,166 (425,590) 

Plymouth 2,290 2,781 (1,015,065) 

Sac 1,395 1,684 (614,660) 

Sioux 3,189 3,873 (1,413,645) 

Woodbury 12,156 14,636 (5,342,140) 

Region 30,967 37,331 (13,625,815) 

lumbers in the parentheses are in 1,000 gallons per year. These 

numbers were actually used in application. 
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any one year^. Two land classes by types of land characteristics 

suitable for irrigation of corn were considered for irrigation. Class I 

2 
and II land (64, p. 334) . These two classes of land are known to be the 

least susceptible to erosion and the most suitable for irrigation. 

As for the future irrigation, three alternative irrigation levels, 

referred to as irrigation level I, II, and III, were formulated. 

Irrigation level I assumed a ten-fold increase in irrigation between 

1974 and 2020. The acreage of irrigated land of each county in 1974 

is reported in Table 15. According to this, a total of 3,877 acres was 

irrigated in Northwest Iowa in 1974. Hence, the above assumption implies 

that the irrigation acreage would reach the level of 38,770 acres in 

2020. Considering the rough approximation made by Hallberg, Koch, and 

Horick that irrigation would increase ten times in Iowa as a whole 

between 1976 and 2000 (29, p. 1), irrigation level I looks somevAiat 

conservative. 

Irrigation level II consists of the acreage of each county's 

Class I land. Table 15 shows that the acreage of Class I land of 

Northwest Iowa totals at 296,200 acres which is nearly 7.6 times as much 

as the total irrigated land under irrigation level I. In the light of 

l 
In the programming run, the minimum level was set at 5 acres. 

In the U.S. Census of Agriculture of 1974, 5 acres were the minimum 
positive level of irrigation in Northwest Iowa (82, pp. II-5-6). 

2 
Class I and II land is characterized as follows (64, p. 334): 

Class I; soils with few limitations that restrict their use 

(with slope ranging 0.2%) 

Class II; soils with moderate limitations that reduce the choice 

of plants or that requires moderate conservation (with 

slope ranging 2-5%). 
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Table 15. Number of acres of irrigated crop land. Class I and II land 

suitable for irrigation of corn, and total crop land 

County Harvested^ Class I^ Class 11^ Total^ 

crop land land land crop land 

irrigated (1967) (1967) (1967) 

(1974) 

(acre) 

Buena Vista 135 25,400 51,300 307,437 

Cherokee 0 17,500 55,400 273,717 

Clay 115 40,200 14,900 300,105 

Dickinson 50 19,200 21,400 178,592 

Ida 0 2,200 26,100 228,198 

Lyon 28 29,400 67,900 304,955 

O'Brien 5 39,600 65,900 311,230 

Osceola 0 29,800 38,700 217,506 

Plymouth 0 11,400 58,000 431,448 

Sac 158 19,200 56,000 306,360 

Sioux 844 31,300 94,800 419,882 

Woodbury 2,542 30,900 25,100 431,474 

Region 3,877 296,200 575,500 3,709,004 

^Source (82, p .  II-3). 

^Source (64, p. 525). 
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the above rough estimate by Hallberg, Koch, and Horick, irrigation 

level II represents a substantial increase in irrigation. Irrigation 

level III assumes that irrigation expands further to Class II land 

^ich totals at 575,500 acres for the region. This implies a roughly 

two-fold increase in irrigation over the irrigation level II. 

Clay County has the largest acreage of Class I land in the region, 

followed by O'Brien County. Hence, these two counties have the greatest 

potential for irrigation in terms of land availability under the 

irrigation level II. Ida and Dickinson Counties have the smallest 

acreage of Class I and II land combined in the region. 

In establishing the minimum production requirements, it was assumed 

that each industrial sector of each county be able to maintain at 

least status quo of 1975 for non-agricultural production and of 1974 

for agricultural production. Some counties would have more potentials 

for growth, depending on water availability. As for non-agricultural 

production, each county's production of a certain sector in 1975 was 

estimated by splitting the region's total production of that sector 

according to that county's share of the income in the region's total 

income produced from the sector. The share was calculated from Table 2. 

Data Set for Water Supply of Northwest Iowa 

The main water supply sources considered in this chapter are grouped 

under two headings: surface water and ground water. One visible effect 

of precipitation is surface runoff, the source of most of our surface 

water. This water is found in rivers and streams, in natural lakes 
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and ponds, and in man-made reservoirs. Ground water can be found near 

the surface in ground water table aquifers, or much deeper in confined 

aquifers. This vertical variation divides aquifers into two general 

classifications: surficial and bedrock. 

Surficial aquifers can be subdivided into three main types; alluvial, 

buried channel and drift aquifers. Alluvial aquifers are those which 

lie adjacent to and beneath streams and are composed of the materials 

deposited by the streams. Ancient stream channels which were carved 

by preglacial or interglacial streams and then buried beneath the 

current landscape by later deposits are called buried channel aquifers. 

Drift aquifers are those which are located in the uplands and composed 

of materials deposited by glaciers. These surficial aquifers are not 

uniform or continuous in occurrence. They can be missing in some 

areas, patchy in others and thick and widespread in others. 

Unlike surficial aquifers, bedrock aquifers are normally continuous 

and underlie large areas. They are usually composed of sedimentary rocks 

occurring in layers and thus areas will have two or more bedrock aquifers 

separated by confining layers. Portions of Iowa are underlain by three 

bedrock aquifers which slope from the northeast to the southwest: the 

Mississippian, the Silurian-Denovian and the Cambrian-Ordovician 

aquifers (74, pp. 29-49). Along the bottom edge of the Cambrian-

Ordovician aquifers is a layer of rock known as the Jordan Sandstone 

which is quite productive. In Northwest Iowa, a bedrock aquifer known 

as the Dakota Sandstone is present and is found at a depth of only a 

few hundred feet. 
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Table 16 summarizes water supply data of the region from the 

preliminary report of the Iowa State Water Resource Research Institute 

(54). The report lists ground water availability in terms of low and 

upper ranges and surface water availability in terms of average annual 

flow and flow-duration values which are equalled or exceeded 90% and 

997o of the time. This study considers only low-range ground water 

availability and surface water availability with 99% of the time. The 

report provides water supply cost data also, which are reproduced in the 

last row of Table 16, These costs were used as coefficients in the 

objective function of the model together with the income coefficients. 

According to Table 16, eight of the 12 counties in the 

region have four water supply sources to depend on; three of these have 

five sources, and Woodbury County has six sources. Woodbury County has 

a tremendous amount of potential water supply, which totals 

610,000 million gallons a year. Of this total, 500,000 million gallons 

can be supplied from the alluvial aquifers associated with the 

Missouri River flood plain at the cost of $0.75 per 1,000 gallons, 

which is the cheapest source in the region, because it lies near the 

surface and each well yields a large amount of water. In addition, this 

alluvial aquifer is seasonally augmented by the Missouri River which is 

sustained by upstream reservoirs. 

Results from Application of the Model to Northwest Iowa 

Table 17 summarizes production activities of the region's 

industrial sectors. The numbers under the heading of final demand 
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Table 16. Water availability of Northwest Iowa by types of supply sources and costs of water 

supply from each source® 

Bedrock 

GWi 

Missouri 

River 

GWz 

Surficial 
aquifer 

GWg 

Interior 
stream 

SW^ 

Big 
Sioux 
River 

SW3 

Missouri 

River 

SW^ 

Reservoir 

SW4 

Total 

(million gallons per year) 

Buena Vista 800 0 16,000 800 0 0 1,920 19,520 

Cherokee 800 0 16,000 800 0 0 14,200 31,800 

Clay 800 0 11,300 800 0 0 4,800 17,700 

Dickinson 800 0 18,900 800 0 0 2,300 22,800 

Ida 800 0 16,000 800 0 0 16,900 34,500 

Lyon 800 0 16,000 800 600 0 13,100 31,300 

O'Brien 800 0 16,500 800 0 0 9,500 27,600 

Osceola 800 0 16,250 800 0 0 0 17,850 

Plymouth 800 0 16,000 800 600 0 6,400 24,600 

Sac 800 0 16,000 800 0 0 5,500 23,100 

^Summarized from (54) . 



www.manaraa.com

Table 16. Continued 

Bedrock 

GW, 

Missouri 

River 

GWo 

Surficial 

aquifer 

GWo 

Interior 
stream 

SW, 

Big Missouri 

Sioux River 

River 

SW, SW^ 

Reservoir 

SW, 

Total 

Sioux 

Woodbury 

800 0 

800 500,000 

16,000 

16,000 

(million gallons) 

800 600 0 

800 0 67,000 

3,800 

25,500 

22,000 

610,100 

Water supply 
cost, c. 

($71000 gal) 1.50 0.75 1.0  1.25 1.25 1.0 2.50 
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Table 17. Final demands, gross production requirements, and income 

multipliers of Northwest Iowa in 2020 at 1975 prices 

Industry Final 
demand (f) 

($ million) 

Gross 

production (x) 

($ million) 

Income 

multiplier 

Agriculture 

livestock 

crop production 

Construction and mining 

Manufacturing 

food and kindreds 

other non-durables 

farm machinery 

other machinery 

other durables 

Transportation 

Communication and Utilities 

Trade 

Finance, insurance and 

real estate 

Services 

585.9 

271.2 

256.9 

750.2 

60.3 

171.4 

190.3 

110.8 

38.5 

187.6 

637.6 

542.6 

574.6 

1,141.3 

604.3 

367.0 

1,044.0 

430.6 

187.5 

312.2 

481.5 

188.8 

339.0 

828.1 

896.7 

815.7 

0.4529 

0.3286 

0.7098 

0.4532 

0.3816 

0.5995 

0.6743 

0.5831 

0.6604 

0.3674 

0.6466 

0.2489 

0.7999 

Total 4,377.9 7,636.9 



www.manaraa.com

65 

indicate the levels of sectoral final demands that can be achieved 

subject to the region's water supply constraints. These numbers coincide 

with the target level of final demands of Table 12 which was imposed on 

the model, implying that the available water supplies of Northwest Iowa 

do not constitute a limiting factor to achieving the target level of 

final demands which was based on income growth projected for the region 

to the year 2020. In other words, the level of final demands projected 

to the year 2020 is fully feasible in terms of the available water 

resources the region holds. 

The numbers in the second column of Table 17 indicate gross 

production requirements of each industrial sector to satisfy the given 

bill of final demands. The production requirements total at 

7,636.9 million dollars. The agricultural sector accounts for 22.9% of 

this and the manufacturing sector for 32.2%. This projected total 

production requirement amounts to 28.1% of the estimate by Barnard of 

gross production of the whole state in 1975. The region's total 

income in 1975 represented only 9.2% of the state income in the same 

year (see Table 3). 

Income multipliers are reported in the last column. The multiplier 

shown there indicates the increase in the total (personal) income of the 

region created by a one-dollar increase in final demand of the correspond

ing sector. Our result shows that the service sector has the highest 

multiplier, 0.8, while the lowest multiplier is observed in the finance 

and insurance sector with 0.2489. Since it is assumed that there is no 

income effect on production, the resulting multipliers would underestimate 
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the actual increase in income caused by a change of final demand. 

Since irrigation is by far the greatest water-consuming activity 

in the region, it becomes an important part of the estimation of water 

requirement of the region. Corresponding to three alternative 

irrigation levels, three programming runs were made. Table 18 shows 

the irrigation levels imposed on each county. The last two columns 

show divergences between initially imposed irrigation levels and 

feasible irrigation levels. Water availability prevents some counties 

from expanding irrigation all the way to irrigation level III which 

consists of the sums of the acreage of Class I and II land in each 

county. These include Buena Vista, Clay, O'Brien, Osceola, Sac, and 

Sioux Counties. As will be seen later in Table 24, an optimal water 

use requires these counties to stop short of exhausting all the potential 

water supplies and to turn to non-irrigated corn production. The maximum 

level of irrigation in each county feasible under each county's water 

availability is reported in the last column of Table 18. (The term, 

irrigation level III, will be retained for these maximum levels of 

irrigation.) 

Table 19 tells us how much water would be required to support the 

above gross production requirements or, \^at is the same thing, the 

target level of final demands projected for the region to the year 2020. 

Since the interdependences among economic sectors are taken into 

account via the input-output system of the model, the water requirements 

as shown in the table include both direct and indirect requirements. 

Under irrigation level I, water requirements add up to 52,782 million 
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Table 18. Irrigation levels imposed in the model for the year 2020 

Irrigation 

level I 

Irrigation 

level II 

Irrigation 

feasible 

level III 

(imposed) 

(acre) 

Buena Vista 1,350 25,400 58,766 (76,700) 

Cherokee 50 17,500 72,900 (72,900) 

Clay 1,150 40,200 53,116 (55,100) 

Dickinson 500 19,300 40,700 (40,700) 

Ida 50 2,200 28,300 (28,300) 

Lyon 280 29,400 97,300 (97,300) 

O'Brien 50 39,600 84,400 (105,500) 

Osceola 50 29,800 55,222 (68,500) 

Plymouth 50 11,400 69,400 (69,400) 

Sac 1,580 19,200 70,220 (75,200) 

Sioux 8,440 31,300 59,199 (136,100) 

Woodbury 25,420 56,000 56,000 (56,000) 

Region 38,970 321,300 745,523 (881,700) 
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Table 19. Water requirements by types of industries of Northwest Iowa in 2020 

Industry Irrigation level I Irrigation level II Irrigation level III 

Agriculture 

livestock 

crop production 

Non-agriculture 

construction and mining 

food and kindreds 

Other non-durables 

farm machinery 

other machinery 

other durables 

transportation 

16,475.6 (31.2%) 

11.851.6 (22.5%) 

10.828.7 (20.5%) 

506.6 

1,329.1 

2,005.9 

146.4 

126.2 

1,165.7 

51.8 

communication and utilities 4,474.3 

trade 379.5 

finance, insurance, 
and real estate 28.3 

(million gallons per year) 

16.475.6 (11.9%) 

97.719.7 (70.5%) 

10,828.7 (7.8%) 

506.6 

1,329.1 

2,005.9 

146.4 

126.2 

1,165.7 

51.8 

4,474.3 

379.5 

28.3 

16.475.6 (6.2%) 

226,744.3 (84.7%) 

10.828.7 (4.0%) 

506.6 

1,329.1 

2,005.9 

146.4 

126.2 

1,165.7 

51.8 

4,474.3 

379.5 

28.3 
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Table 19. Continued 

Industry- Irrigation level I Irrigation level II Irrigation level III 

(million gallons per year) 

services 614.7 614.7 614.7 

Final water use 13,625.8 (25.8%) 13,625.8 (9.8%) 13,625.8 (5.19%) 

Total requirement 52,781.7 138,649.6 267,674.4 

Ground water supplies 
(excluding bedrocks) 690,950 690,950 690,950 

Surficial aquifers 190,950 190,950 190,950 

Missouri River plain 500,000 500,000 500,000 
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gallons. Since irrigation level I represents a modest irrigation 

expansion of the region, crop production claims a modest 22.5% of the 

total. Due to the large livestock production requirement, the livestock 

sector takes up the largest portion of the total with 31.2%. The water 

requirements of the other industrial sectors, lumped together, represent 

20.5% which is less than the amount of final water uses. 

If irrigation is scaled up to level II, the total water requirement 

swells a great deal, to 138,650 million gallons which is a 162.7% 

increase over the requirement under level I. All of this increase is 

explained by the increase in irrigation water requirement, so that crop 

production accounts for a 70.5% of the total water requirement of the 

region. A shift from level II to level III leads to another big 

increase in the total water requirement solely due to increased 

irrigation. In irrigation level III, the total water requirement stands 

at 267,674 million gallons. Water for crop production claims the lion's 

share of the total with a 84.7% of it. This leaves only 15.3% of the 

total shared by all the other sectors including final uses of water. 

Even though irrigation is shown to add a substantial burden to the 

region's water resource, it can be seen from the water supply data 

that the total water supply available for the region as a whole far 

exceeds the region's total water requirements for various production 

activities and final uses, even if the total requirements are scaled up 

by a substantial increase in irrigation and by projected population and 

economic growth of the region to the year 2020. Table 19 demonstrates 

that the amount of water that can be tapped from the alluvial aquifer 
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of Missouri River flood plain alone, which is estimated at 500,000 million 

gallons per year, is a great deal more than enough to cover the region's 

total water requirement even under irrigation level III. Moreover, 

this aquifer constitutes the cheapest water supply source available for 

the region. Hence, it can be concluded that Northwest Iowa as a whole 

has potentially sufficient water supplies to depend on for the region's 

population and economic growth, which is not much out of the line with 

the projection series made by the State of Iowa. 

In the subregional level, the substantial water requirement 

associated with expansion of irrigation may impose a heavy burden on 

the subregion's water resources, making water availability a limiting 

factor to subregional growth. Table 20 shows how the region's total 

production requirement presented in Table 17 is proportioned to each 

county. According to it, in all production categories, Woodbury County 

is designated as by far the largest supplier of goods and services. It 

takes care of nearly one-third of crop production, 37.2% of livestock 

production, 83.7% of non-agricultural production, and, in sum, 72.8% 

of the total production of the region. Livestock production and 

non-agricultural production by the other counties are shown to remain 

at the level of 1975, implying zero growth in these categories to the 

year 2020. Slight growth in crop production by the other counties is 

due to the exogenously imposed irrigation expansion. The monopoly of 

the region's industrial growth by Woodbury County is justified by the 

fact that, neighboring the Missouri River flood plain, this county has by 

far the largest water supply source in the region. As shown in Table 19, 
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Table 20. Production requirements of each county in order to achieve 
the level of final demands in the year 2020 under various 
irrigation levels 

Crop Livestock All Total 

irrigation 

level I 

irrigation 

level II & III 

other 

sectors 

($ million) 

Buena Vista 50.8 50.8 41.4 118.2 210.4 

Cherokee 30.0 38.0 69.3 96.4 203.7 

Clay 35.7 37.5 37.5 112.2 185.4 

Dickinson 22.5 22.5 24.6 88.4 135.5 

Ida 27.1 27.1 41.6 45.1 113.8 

Lyon 24.3 24.3 66.5 57.5 148.3 

O'Brien 41.7 41.7 68.1 81.3 191.1 

Osceola 22.4 25.1 40.2 40.4 103.0 

Plymouth 45.3 45.3 97.1 99.2 241.6 

Sac 44.0 44.0 69.4 65.6 179.0 

Sioux 46.5 46.5 160.8 156.8 364.1 

Woodbury 206.0 201.5 424.7 4,930.9 5,561.6 

Total 604.3 604.3 1,141.2 5,892.0 7,636.7 
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setting aside the other water supply sources of the county, the amount 

of water available from the surficial aquifer of the Missouri River 

flood plain alone is nearly twice as much as Northwest Iowa's total 

water requirement under irrigation level III in 2020. Furthermore, 

this surficial aquifer is the cheapest water supply source in the 

. 1 
region . 

Table 21 describes distribution of corn production between irrigation 

and non-irrigation. Under irrigation level I, irrigated corn production 

accounts for only 6.7% of the total corn production. As irrigation is 

raised from level I to level II, the share of irrigated corn production 

sharply rises to 56.1%. Clay and Osceola Counties irrigate all of 

their corn production. Clay County has the largest Class I land in the 

region. Irrigation of all of Class I land in Osceola County exhausts 

the county's optimum corn production requirement which is relatively 

samll in the region. 

Under irrigation level III, about 71.8% of the region's corn 

production is irrigated and most of the counties irrigate all of their 

corn production. Only Ida, Sac, Sioux, and Woodbury Counties retain 

non-irrigated land for corn production at significant levels. Ida 

County holds the smallest acreage of Class I and II land in the region. 

Sac, Sioux, and Woodbury Counties have been traditionally a large corn 

producer in the region. 

^Such large withdrawals of this surficial aquifer as indicated by 

Table 19 migjht impact eventually on the interstate allocation of the 

total water resource of the Missouri River basin. 
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Table 21. Corn production by counties in the year 2020 under various irrigation levels 

Irrigation level I Irrigation level II Irrigation level III 

irrigated non-irrigated irrigated non-irrigated irrigated non-irrigated 

(1000 bushels) 

Buena Vista 348 13,899 6,553 7,694 15,162 0 

Cherokee 12 11,908 4,340 7,580 18,079 0 

Clay 288 8,877 10,050 0 13,279 0 

Dickinson 116 5,343 4,458 1,001 9,402 0 

Ida 13 9,254 568 8,699 7,301 1,965 

Lyon 59 6,765 6,174 650 20,433 0 

O'Brien 12 11,406 9,702 1,716 20,678 0 

Osceola 12 5,630 6,943 0 12,867 0 

Plymouth 11 14,915 2,440 12,486 14,852 74 

Sac 392 13,125 4,762 8,756 17,415 32,558 

Sioux 1,882 14,144 6,980 9,046 13,201 2,825 

Woodbury 5,745 8,368 12,656 1,457 12,656 1,457 

Total 8,890 123,634 75,626 59,085 175,325 38,879 
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Table 22 shows that under modest irrigation level I water 

requirements for all types of uses are fully supplied from the cheapest 

water supply source available for each county. The cheapest water 

supply source in the region is the surficial aquifer (GW^). Of the 

region's total water requirement 52,782 million gallons, 53.8% is 

ascribed to Woodbury County. The next largest water consumer is 

Sioux County which is followed by Plymouth County. 

Table 23 shows water requirement of each county under irrigation 

level II. Woodbury County's water requirement is shown to drop to 

27.2% of the region's total water requirement. This is due to large 

irrigation water requirement of the other counties. O'Brien, Clay, 

and Sioux Counties enter the list of the large water consumers in the 

region. The large irrigation water requirement is shown to push Clay 

County to the lower bound of ground and stream water supplies and 

forces it to turn to reservoir water which is the most expensive water 

supply source. Clay County holds the smallest water supply sources in 

the region, while it has the largest acreage of Class I land which is 

known to be most suitable to irrigation. All the other counties still 

have recourse to the cheapest water supply source (GWg) available to 

each county under irrigation level II. 

According to Table 24, expansion of irrigation to level III exhausts 

all the safe levels of ground and stream water supplies in most counties 

of the region (safe in the sense of the lower ranges of the ground water 

supply sources and the availabilities with 99% of the time from 

stream flows). Only Dickinson, Ida, and Osceola Counties have some 
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Table 22. Water requirements by counties and by types of uses under irrigation level I in 2020 

County Agricultural use Non- Final Total Supply 
crop livestock agricultural use water use source 

(million gallons per year) 

Buena Vista 410.6 598.2 187.7 861.4 2,057.9 (3.9) GW^ 

Cherokee 15.2 999.7 175.0 695.3 1,885.2 (3.6) GW3 

Clay 349.7 541.2 199.7 805.2 1,895.8 (3.6) GW3 

Dickinson 152.1 355.7 146.5 709.2 1,363.5 (2.6) GW3 

Ida 15.2 600.7 73.8 330.3 1,020.0 (1.9) GW3 

Lyon 85.2 959.8 88.4 634.0 1,767.4 (3.3) GW3 

O'Brien 15.1 983.3 169.8 779.3 1,947.5 (3.7) GW3 

Osceola 15.1 580.9 48.6 425.6 1,070.2 (2.1) GW3 

Plymouth 15.2 1,401.4 176.3 1,015.1 2,608.0 (5.0) GW3 

Sac 480.5 1,002.4 127.3 614.7 2,224.9 (4.2) GW3 

Sioux 2,566.8 2,321.5 260.7 1,413.6 6,262.6 (11.9) GW_ 

^he numbers in the parentheses represent the percent of a county's total water requirement 

in the region's total water requirement. 
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Table 22. Continued 

County Agricultural use Non- Final Total Supply 

crop livestock agricultural use water use T source 

(million gallons per year) 

Woodbury 7,730.0 6,130.8 9,174.9 5,342.1 28,378.7 (53.8) GW. 

Total 11,851.6 16,475.6 10,828.7 13,625.8 52,781.7 (100.0) 
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Table 23. Water requirements by counties under irrigation level II in 2020 

County Crop Total Supply sources 

(million gallons per year) 

Buena Vista 7,724.9 9,372.2 (6.7) GW3 

Cherokee 5,322.1 7,192.1 (5.2) GW3 

Clay 12,225.8 13,771.9 (9.9) GW^, GW3, SW^, SW^ 

Dickinson 5,869.8 7,081.3 (5.1) GW3 

Ida 669.1 1,673.9 (1.2) GW3 

Lyon 8,944,9 10,627.1 (7.7) GW3 

0'Brien 12,043.1 13,975.3 (10.1) GW3 

Osceola 9,063.2 10,118.3 (7.3) GW3 

Plymouth 3,467.2 6,060.0 (4.4) GW3 

Sac 5,839.2 7,583.5 (5.5) GW3 

Sioux 9,519.2 13,515.0 (9.8) GW3 

Woodbury 17,031.2 37,679.0 (27.2) GWg 

Total 98,719.7 138,469.6 
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Table 24. Water requirements by counties under irrigation level III in 2020 

County Crop Total Supply sources 

(million gallons per year) 

Buena Vista 17,871.8 19,519.8 all 

Cherokee 22,170.3 24,040.5 all 

Clay 16,153.0 17,700.0 all 

Dickinson 12,378.7 13,590.0 GW3 

Ida 8,606.9 9,611.7 GW3 

Lyon 29,603.3 31,285.6 all 

O'Brien 25,667.6 27,000.0 all 

Osceola 16,794.9 17,850.0 GW^, GW3, SW. 

Plymouth 21,107.1 23,700.0 all 

Sac 21,355.4 23,100.0 all 

Sioux 18,004.1 22,000.0 all 

Woodbury 17,031.2 37,679.0 GW2 

Total 226,744,3 267,676.6 
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of the water supplies left unused. Dickinson, Ida, and Osceola 

Counties have the smallest irrigation water requirement in the region 

due to the lack of land suit vie for irrigation. 

Table 25 shows the amount of water taken from each water supply 

source of the region under irrigation level II and III. Under 

irrigation level I, each county's total water requirement is within the 

supply limit of the surficial aquifer, the cheapest supply source to 

each county. Expansion of irrigation to level II and III forces nine 

counties listed in the table to reach the safe supply limit of each 

ground and stream water supply source and to require the most expensive 

water supply sources, the reservoir storage, for additional water, 

thereby causing the positive shadow prices to be associated with the 

relatively cheaper water supply sources. A shadow price of a constraint, 

often called the dual evaluator in the linear programming context, 

indicates the change in the value of the objective function (regional 

total income in our model) that can be achieved if the constraint were 

relaxed or tightened by one unit (10, p. 26). Shadow prices associated 

with ground and stream water under irrigation level II and III are 

reported in the last row of Table 25. 

The surficial aquifer, which is the cheapest water supply source of 

each county (except for Woodbury County), has the highest shadow price, 

1.5 dollars per 1000 gallons. An increase in the availability from this 

supply source would add to the region's total income by 1.5 dollars per 

1000 gallons. Water from the stream flow, the next cheapest water supply 

source, has a shadow price of 1.3 dollars per 1000 gallons. In other 
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Table 25. Water use by types of supply sources and shadow prices of water vAien more than one 

source is tapped 

Ground water Stream water 

bedrock surficial interior Big Sioux 

aquifer aquifer stream River 

GW, GWo SW, SWo 

Reservoir 

SW, 

Total 

require

ment 

supply 

(million gallons per year) 

Irrigation level II 

Clay 

Irrigation level III 

800 11,300 800 n. a. 871.9 13,771.9 17,700 

Buena Vista 800 16,000 800 n.a. 1,919.8 19,519.8 19,520 

Cherokee 800 16,000 800 n.a. 6,440.5 24,040.5 31,800 

Clay 800 11,300 800 n.a. 4,800.0 17,700 17,700 

Lyon 800 16,000 800 600 13,085.6 31,285.6 31,300 

0'Brien 800 16,500 800 n.a. 9,499.9 27,599.9 27,600 

Osceola 800 16,250 800 n.a. 0 17,850 17,850 

Plymouth 800 16,000 800 600 5,500.0 23,700 24,600 

^n.a. = not available. 
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Table 25. Continued 

Ground water Stream water Reservoir Total 

bedrock surficial interior Big Sioux require- supply 
aquifer aquifer stream River ment 

GW^ GW^ SW^ SW^ SW^ 

(million gallons per year) 

Sac 800 16,000 800 n.a. 5,500.0 23,100 23,100 

Sioux 800 16,000 800 600 3,800.0 22,000 22,000 

Shadow price 
($/1000 gal) 1.00 1.50 1.30 1.30 0 
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words, the water from the stream flow is worth 1.3 dollars per 1000 

gallons to the region's economy. The water from bedrock aquifers, the 

most expensive one besides the water from reservoirs, is worth one dollar 

per 1000 gallons. No county exhausts the full reservoir capacity, so 

that the water from reservoirs has a zero shadow price. An additional 

reservoir capacity over the level specified in Table 16 makes no 

contribution to the region's income generation and thus, is unnecessary 

except for the extreme drought period (i.e., 99 percent of. the time). 

One important result is that the water from alluvial aquifers of 

the Missouri River flood plain, the cheapest water supply source in the 

region as a whole, still commands a zero shadow price, even if it is 

put under the region-wide water distribution. Since irrigation 

constitutes the main burden on the water supplies of most counties in 

the region and since, as a result, most counties turn to relatively 

expensive water supply sources to meet increased water requirement, it 

is desirable to impose as much irrigation water requirement as possible 

on the surficial aquifer of the Missouri River flood plain. This implies 

that Woodbury County, on the Missouri River flood plain, should expand 

irrigation as much as possible. However, availability of land suitable 

for irrigation in Woodbury County limits its expansion of irrigation. 

Table 18 shows that this county has only 6.3 percent of the region's 

total acreage of Class I and II land combined. 

Another possibility is to transport the water from the surficial 

aquifers of the Missouri River flood plain to other counties. These 

other counties have recourse to the water supply sources which are more 
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costly (by more than 33 percent) than the water from the Missouri River 

flood plain. 

Table 16 shows that the water supply cost from these surficial 

aquifers is estimated at 0.75 dollars per 1000 gallons and that from 

interior streams at 1.25 dollars per 1000 gallons. Hence, if the 

transport cost is less than the difference between these two costs 

(0.5 dollars per 1000 gallons), transportation of the water from the 

Missouri flood plain would save the costs associated with utilizing 

relatively expensive water supply sources by the other counties 

including interior streams, bedrock aquifers, Big Sioux River, and 

reservoir storages. If the transport cost is less than 1.75 dollars 

per 1000 gallons, which is the difference between the above 0.75 

dollars and the cost of the water from the reservoir storage, trans

porting the water from the surficial aquifers of the Missouri River 

flood plain dispenses with building expensive reservoir facilities in 

the other counties. 
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CHAPTER IV. EXTENSION OF THE MODEL FOR IMPACT AND 

MULTI-OBJECTIVE ANALYSIS 

The Extended Input-output System 

Extension of the basic input-output system 

The input-output system is based on inter-sectoral transactions. 

The principal features of the flow of inter-sectoral transactions are 

shown in Table 26 (81, p. 24). The items in the second and third 

quadrant of the table are defined as follows: 

C^ = household consumption expenditures on final output produced 

by sector i; 

= government expenditures on final output produced by sector i; 

I^ = investment by sector i; 

E^ = exports by sector i; 

Y^ = factor payment by sector i; 

T^ = taxes paid by sector i; 

S^ = saving and depreciation allowances in sector i; and 

M^ = imports by sector i. 

The items in the fourth quadrant are explained in the footnote^. 

Yq = intrahousehold transactions; Sg = household savings and 

expenditures for depreciation of consumer durables or capital goods; 

Mg = household purchase of imports; Yg = factor payment by government 

(e.g., wages and salaries of government employees and interest payment 

by governments) and various transfer payments by governments; Tq = tax 

payment by governments (e.g., employment taxes); Sq = depreciation 

allowances for public facilities and government surplus; Tj = sales and 

excise taxes on purchases of new capital goods and consumer durables; 

Sj - net investment (see 3, pp. 79-80); Mj = imported capital goods and 

net lending to foreign countries; Yg = net flow of factor income from 

foreign countries; Sg = capital exports; Mg = balance of trade. 
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Table 26. Generalized transaction table 

Producing Final demand Total 

sector (expenditure for) 

(I) 
1 
1 (II) 

producing 

sector 
*11 • ••• =ln 

1 
1 
1 

^1 ^1 4 ̂1 *1 

\1 

1 
1 
1 

1 
_ T -

C 
n 

G 
n in E 

n 
X  
n 

(III) 
1 
1 

(IV) 

Payment 

to 
Yi .. ... Y n 

1 
1 
1 

^G \ Y 

Ti .. n 1 
1 

^G ^I 
T 

Si .. ... 1 
1 ^G "l 

S 

Ml .. ... 
1 
1 
1 

1 

^G ^I 
M 

Total Xl " 

1 
1 
1 
1 

c G I E X 
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Summing across the totals row and down the totals column, 

n 

X — Z! X. + C + G + I + E, 
j ^ 

and 

n 

X  =  2 x .  +  Y  +  T  +  S + M .  

i ^ 

Since 2 x. = S x, and all intermediate flow totals are canceled out, 

j ^ i "" 

Y + T + S 4"M = C + G + I + E, 

That is, value-added + imports = final demand. 

Consider again an economy with m different primary and natural 

resources and with n industrial (producing) sectors, each producing one 

homogeneous commodity. The following notation will be repeatedly 

used: 

X = (x^, X2, x^)' = vector of gross outputs of the producing 

sectors; 

Y = personal disposable income; 

f = (f^, fg, ..., f^)' = vector of final outputs of the producing 

sectors = vector of autonomous spending on final outputs 

(= commodity expenditures, briefly); 

r = (r^, r^, r^)' = vector of total use of primary and 

natural resources (measured in physical units); 

fj. = (fp^, f^2' •••' ' ~ vector of final use of primary and 

natural resources (measured in physical units); 

G = autonomous non-commodity expenditures (G will be defined 

later); 
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V = (v^, Vg, v^)' = vector of factor costs per unit of gross 

output = vector of income coefficient of x; 

c = (c^, Cg, c^)' = vector of the disaggregated marginal 

propensity to consume final outputs; 

c  = ( c . , c _ ,  . . . , c  ) ' =  v e c t o r  o f  t h e  d i s a g g r e g a t e d  m a r g i n a l  
IT IT X IT ̂  irm 

propensity to consume primary and natural resources; 

t = the aggregated marginal propensity to consume the primary 

and natural resources altogether; 

X' = (x', r', Y); 

d' == (f, f;', G); 

d' = (f', f^', nG), where n = l/(l-c); 

A A 
V = nv; 

A = ((a..)) = nxn technical coefficient matrix; 
1] 

B = ((b^j)) = mxn matrix of primary and natural resource require

ment per unit of gross outputs; 

u' = v'(I-A) ̂  = vector of income multipliers for f; and 

_x 
z = (I-A) c = vector of induced production. 

It is not necessary, but convenient, to assume that r and f^ are 

measured in physical units like gallons, tons, etc. Autonomous spending 

includes household autonomous consumption expenditures, government 

spending, investment, and exports. Autonomous consumption expenditures 

are grouped into two categories: those on produced commodities and 

those on primary and natural resources (including environmental 

resources). As income rises, people would spend more not only on 

produced commodities, but also on natural resources. 
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Since primary and natural resources are the economy's only income 

earning inputs and all income is due to the sale of them, Y consists 

of payments made by all the industrial sectors and non-industrial sectors 

for primary and natural resources. The first row of the quadrant III 

and IV of Table 26 suggests the following income equation: 

? = ?1 + ?2 + + Tc + ?G + 

where 

Y^ = income received from producing (industrial) sector i, 

i = 1, 2, ..., n; 

Yg = income received from the household sector; 

Y„ = income received from governments (e.g., wages and salaries of 

governments, various transfer payments by governments, etc.); 

and 

Yg = income received from the foreign sector. 

Income received from the household sector (Y^) is identically equal to 

what the household sector pays primary and natural resources for their 

services. Assume that this household expenditure is related to income 

Y as in the following expression: 

Y^ = cY + C , 

where C represents an autonomous component. Substituting this into the 

above income equation. 

Y = Y, + Y- + ... + Y +CY + G 
i z n 
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where 

G = C + Yg + Yg . 

We will simply call G autonomous non-commodity expenditures. Putting 

n = 1/(1 - c) revises the above equation as 

Y = n(Yi + Yg + ... + Y^ + G) 

Let X .. and r.. denote the amount of x. and r, to be used for 
ij ij i i 

production in sector j, respectively. By the bookkeeping identity of 

the input-output table, 

Xi = Xii + Xi2 + ... + x^^ + c^Y + f^ (i = 1, 2, ..., n) (20a) 

+ r^2 + ••• + + c^^Y + f^^ (i = 1, 2, .., m) (20b) 

Y = n(Y^ + Y2 + ... + Y^) + nG (20c) 

Equations (20a) and (20b) say that gross output of sector i and 

resource i are allocated for intemediate uses (x. . and r. .), 
ij ij 

consumptive uses (c^Y and c^^Y) induced by changes in income, and final 

uses associated with autonomous spending. 

Now, let's introduce the proportionality assumption: 

Xij a^jXj 

'ij = »ij*j 

where a^^, b^j, and Vj are constants. This assumption allows the 
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equation system (20) to be rewritten as follows 

(l-aji)*! "*12*2 

"*21*1 (1"*22)*2 

-*nl=l 

'^11=1 

"*n2*2 

"^12*2 

"*ln*n 

-Vn 

+ ̂ 1 

-CiY = fi 

•C2Y = fg 

-c Y 
n 

"ri^ 

= f 
n 

^ri 

'\l=l 

-fiviXi 

"^2*2 

-AvgXz 

-b X 
mn n 

-nv X 
n n 

+ r -c Y = f 
m rm rm 

+ Y = nG 

or in matrix notation 

(I - D)X = d (21) 

where 

If we assume linearity instead of proportionality as 

X.. = a..x. +x,., r.. =b..x. +r 
ij ij J ij ij ij J •ij' 

X.. and r,. are included in f. and f ., respectively, 
ij il 1 ri' 
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X 

X-I 

X 
n 

m 

/ \ 

f. 

n 

\ 

A 
d = 

\ 

, A A 
and = n . 

rl 

nn 

nG 

\ / 

, D = 

11 

nl 

11 

ml 
/> 

V, 

\ 

* n n O O  

bin 0 0 

^ m n O O  

V 0 0 
n 

n 

-rl 

rm 

/ 

The (n+mfl)x(n+iiH-l) matrix (I - D) will be referred to as the 

augmented Leontief matrix. 

A 
If the bundle of final demand d is exogenously specified, 

Equation (21) yields 

X = (I - D)"^d (22) 

if the inverse exists. This inverse will be referred to as the 

augmented Leontief inverse. The inverse translates the given bundle 

of final demands into the equilibrium amounts of economy's gross 

production (x), employment of non-produced resources (r), and total 

income (Y). 

When an input-output table is made for a particular year, positive 

X, f, Y, and G are actually observed for that year. Let non-negative 

A 
D be computed for a particular year and let non-negative X and d be 

observed for the year as well. Then condition (1) of Theorem 1 is 

satisfied for (I - D). It follows that there exists an inverse (I - D) 
-1 

so that for any final demand vector d Equation (22) holds. 
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Since the first n columns and rows of (I - D) form the Leontief 

matrix (I - A), (I - D) is partitioned as 

I-A 

-R 

-C 

where 

R = 

11 

ml •• 

\ 
1 •• 

In 

mn 
A 
V 
n 

C = 

-1 
There exists E ; 

,-l 

,-l 

0 0 

0 0 

0 0 

\ 

1 0 

0 1 

0 0 

0 0 
\ 

\ 

0 C, 

0 c. 

0 c_ 
n 

X 

, E = 

0 c 
N 

rl 

0 c 
r2 

1 c 
rm 

0 1 

1 0 

0 1 

0 0 

0 0 

Let (I - D) be partitioned in the same way as (I - D): 

0 -

0 -

1 

0 

(I - D) 
- 1  

T I U 

W 

\ 
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By definition of the inverse matrix, 

s / \ 

(I - A) ; -c 

-R 

u 

w 

:n : 0 

0 
\ 

Wi 

Four equations are obtained for the four unknown submatrices T, U, S, 

and W (28, pp. 108-109): 

(I-A)T - C S = I 
o n 

(I-A)U - C^W = 0 

-RT + ES = 0 

-RU + EW = 

- 1  
Since there exists E , the third equation yields 

— 1 •— 
S - E RT 

Substituting this into the first equation. 

(I - A - C^E'^R)T = 

By definition of the inverse matrix. 

T = (I - A - C 

-1 -1 
From the existence of (I - D) and E follows existence of 

- 1  1  
(I - A - C^E R) . Following the same procedures, we obtain 

T = (I - A - C^E"^)'^ 

U = (I - A - C E"^R)"^C E"^ 
o ' o 
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S = E"^R(I - A - C^E 

w = E"^ + E"^R(I - A - C^E"^R)C^E"^ 

Due to the special pattern ofE^, CE^=C and C E = C R = cv' . 
o o o o 

Hence, 

(I - D) 
- 1  

(I-A-cv' )"^ (I-A-cv')"^C 

~ 1̂ * 1 ' ""1 " 1 —  ̂ •• 1 
E R(I-A-cv') ; E + E R(I-A-cv') C 

\ 

Since 

— 1"— — X 
E R = E 

^ s. 

B B+c v' 
r 

1 A , 
v' v' 

we have 

(I-D) 
- 1  

(I-A-cv') ̂  
I I A -1 
I 0 I (I-A-cv') c 

\ 

(B+c v') (I-A-cv') I } c +(B+c v') (I-A-cv') ̂ c 
.J—ÎJ. r — r 

v'(I-A-cv') ^ i 0 I 1+v'(I-A-cv') ̂ c 

\ 

(23) 

where 0 is a null matrix or a null vector. 

The solutions of the open system 

/A 
Suppose that c = 0 and c = 0, i.e., a change in income does not 

create a change in consumption of commodities and of non-produced 

resources^. Let's call the resulting extended input-output system the 

open system. Accordingly, n = 1, and v = v. This assumption greatly 

simplifies (I-D) and (I-D) ̂  as follows ; 

As a result, all the induced consumption is transferred into the 
final demand category. 
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(I-A) 0 

(I-D) = -B 

^m+1 

(24) 

^m+1 

-v' 
k 

y 

(I-D) 

(I-A) 
- 1  

B(I-A) 

v' (I-A) 
- 1  

m 

\ 

0 

0 

1 

\ 

(25) 

In the extended open system, the (nxn) submatrix in the upper left cell 

of the augmented inverse matrix is the Leontief inverse of the basic 

open model. Plugging the above inverse matrix into Equation (22) yields 

solutions for gross production (x), resource employment (r), and 

income (Y) for given values of final demands f, f^, and G: 

X = (I - A)"^f 

r = B(I - A)"^f + fp = Bx + fp 

Y = v'(I - A) ̂ f + G = v'x + G 

(26) 

(27) 

(28) 

Equation (26) is identical to Equation (4) of the basic input-output 

system. Furthermore, Equations (27) and (28) show that, once x is 

determined by Equation (26), r and Y are also determined. That is, 

the solution of the basic input-output system is a basic solution from 

which solutions for additional two endogenous variables (r and Y) of 

the open system are derived. In particular, if the Leontief inverse of 

the basic input-output system, (I-A) is known, all the solutions of 
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the open system are directly obtained from the basic input-output system. 

Equation (27) is related to the concept of the production possibility 

curve (transformation curve) in the input-output model. It says that 

if f and f^ are given, r is determined. On the other hand, if r is 

fixed, the problem is to choose a set of f and f^ such that all the 

fixed resources will be fully employed. The set of f and f^ is 

constrained by the availability of primary resources r. Therefore, the 

set of solutions for f and f^ satisfying 

B(I-A)"^f + f^ < r 

with r fixed provides the production - possibility set associated with 

particular value of r. For instance, in a two-sector and two resource 

system where 

B(I-A) 
- 1  

^1 hi2 

II 

i r = 

/
 

1—
1 u

 

\
 

^^21 ^22 
< > 

^2 
\ ^ 

and fp = 0, solutions for f^ and f^ satisfying 

^11^1 ^12^2 - ̂1 

^21^1 ^22^2 - ̂2 

describes the production-possibility set OABC in Figure 2, Point B is 

the only one where both r^ and r^ are fully employed. Along the frontier 

AB, r^ is fully employed while some of r^ is unemployed, and along the 

frontier BC, vice versa. 
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r 1 

r, constraint 

r 
2 

r„ constraint 

f 
0 r r 

^11 ^21 

Figure 2. The production possibility set 

While A, B, and v relate gross output x to production, resource 

-1 -1 -1 
employment, and income, respectively, (I-A) , B(I-a) , and v'(I-A) 

relate final outputs f to production, resource employment, and income, 

respectively. An increase in requires not only an increase in x^ 

directly, but also increases in for j = 1, 2, n indirectly due 

to interdependence in production. The latter set of matrices reflect 

both the direct and the indirect requirements associated with f. Since 

an increase in expenditures on f (commodity expenditures) has a 

multiplier effect on production, resource employment, and income to the 

-1 -1 -1 
extent of (I-A) , B(I-A) , and v'(I-A) , respectively, these matrices 
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can be alternatively referred to as the production multiplier matrix, 

the resource-employment multiplier matrix, and the income multiplier 

vector for f, respectively. 

Equations (26) - (28) show that the autonomous non-commodity 

expenditure G does not have a multiplier effect in the open system. Even 

if the government boosts household income through subsidies and transfer 

payments or through other measures, it does not affect the economy's 

production, hence, employment. This is because a mechanism to link 

income to production is wiped out by the assumption of c = o and c = o. 

The only way for the government to change the level of the economy's 

production and employment is by its purchases of produced commodities. 

The open system explains how effects of such purchases propagate to 

production and employment. 

The solutions of the closed system 

Assume that c ^ 0 and c ^ 0. Then, a change in income would entail 

a change in consumption which in turn touches off a series of 

repercussions on production, employment, income, and consumption again. 

Taking these repercussions into consideration leads to \Aiat will be 

called the closed system. For ready reference, the inverse of 

Equation (23) is reproduced here: 

(I-A-cv') ̂  0 (I-A-cv') ̂ c 

(I-D)"^ = (B+c^v')(I-A-cv')"^ I 
m 

c^+(B+c^v')(I-A-cv')"^c 

v'(I-A-cv') ̂  0 1+v'(I-A-cv') ̂ c 
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where v = nv. 

-1 -1 
A brief comparison of this (I-D) with (I-D) of the open system 

would yield an observation that introduction of income effect transforms 

(I-A) A, and B of the open system into (I-A-cv') (Afcv'), and 

(B+c^v'), respectively. 

Since 

cv' = ((c^Vj)) and c^v' = ((c^^Vj)), 

the i-j th element of (At-cv') and (B+c^v') turns out to be (a^, j-Hz^^Vj) 

and (b..+c .v.), respectively, indicating that each unit of product j 
IJ J 

is associated with (a. .+c.v.) units of sector i's product and 
ij 1 J 

(b..+c .v.) units of resource i rather than only with a,, and b.. 
ij ri y ij xj 

units as in the open system. 

Substituting the inverse of Equation (23) into (22) provides the 

solutions of the extended closed system for x, r, and Y. However, such a 

solution process leads to the following troubles in input-output 

analysis. First, it involves the procedures of computing the inverse 

matrix, thus adding to the computational burden. This burden would 

become heavy in terms of time and money especially when the size of the 

matrix is huge. In order to reduce the computation time and cost, 

the method of matrix inversion by partitioning can be used. However, 

the augmented Leontief inverse of Equation (23) comprises another inverse 

_x 
matrix (I-A-cv ) in itself. Computing the inverse calls for computing 

another inverse. 

Second, even if the inverse matrix had been computed, its usefulness 

is limited, because the vector of the disaggregated marginal propensity 
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to consume (MPC) is congealed into the resulting inverse matrix. The 

MPC vector is considered to be more variable than technical 

coefficients (84, p. 43). This makes the inverse matrix also variable. 

This in turn subjects the resulting input-output solutions to the 

same variability^. Everytime the MPC vector is revised, the inverse 

should be computed anew. Therefore, it is desirable to separate the 

term cv' from (I-A-cv') Another advantage of separating the MPC 

vector from (I-A-cv') ̂  is that Leontief inverse of the basic input-

output system, (I-A) is provided by any input-output table, so that 

the augmented Leontief, (I-D) can be spelled out without following 

tedious and costly procedures of matrix inversion. 

To separate cv' from (I-A-cv') the following useful theorem 

can be employed (26, p. 211). 

Theorem 2: If A is a kxk non-singular matrix and c and d are kxl 

vectors, then |A+cd'| = |A| (1+d'A ^c). If the inverse of the 

matrix (A+cd') exists, the inverse is given by 

(Atcd')-l . A-1 . 

1 + d'A" c 

Applying this theorem to (I-A-cv') gives 

(I-A-cv')"^ = (I-A)"^ + —c]rv'(I-A)—1 (29] 

1 - v'(I-A)" c 

It is simple to show that the denominator is positive. By Theorem 2, 

.yazawa deals with this problem in length (52). 
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jl-A-cv' I = |l-A.| CL-v(I-A)"^c] . 

By the Hawkins-Simon condition (see Theorem 1 of p. 16), all the principal 

minors of (I-A) and (I-D) are positive so that 

jl-A-cv' I > 0 and |l-A| > 0 . 

Therefore, by Theorem 2, 

1 - v'(I-A)"^c > 0 . QED. 

-1  /\  
Since (I-A) > 0 by Theorem 1 and both c and v are non-negative, the 

following inequality can be proved as a by-product; 

d-A-cv')"^ > (I-A)"^ . 

That is, the effect of autonomous spending on production, employment, 

and income is greater in the closed system than in the open system. 

Substituting Equation (29) into Equation (13), we obtain after a 

little manipulation (see Appendix) 

(I-D) 
-1 

.an-1. (I-A)-lcv'(I-A)-l 
(I-A) + 

1 - v'(I-A) c 

_1 CB(I-A)"^C+C ]v'(I-A)"^ 
B(I-A) 4 

1 - v'(I-A)"^c 

v'(I-A)"^ 

1 - v'(I-A)"^c 

m 

(I-A)"^c 

1 - v'(I-A) ̂ c 

B(I-A)"^c+c^ 

1 - v'(I-A)"^c 

1 - v'(I-A)"^c 

(30) 
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Thus, the augmented inverse matrix is stated in terms of already known 

-1 
coefficients, (I-A) , B, c, c^, and v. The vector of marginal 

propensity to consume is separated from matrix inversion. Hence, 

revision of c does not entail computation of a new inverse. In fact, 

there is no need to compute any inverse matrix in obtaining the augmented 

Leontief inverse matrix because (I-A) ̂  is readily available from any 

input-output table. 

Separating n from d = (x', r', nG)' and putting it into (I-D) ̂  

revise the last column of (I-D) as 

( -1 ̂  ^ 
(I-A) cn 

1 - v'(I-A) ̂ c 

[B(I-A) ̂ c+Cp]n 

1 - v'(I-A) c 

A 
n 

A . -1 
1 - v'(I-A) c 

\ y 

Since n = l/(l-c) and v = nv = v/(l-c) , 

" = _ 1 

1 - v'(I-A)"^c 1 - v'(I-A)"^c/(l-c) 

Similarly, 

v'(I-A)"^ ^ v'(I-A)"^/(l-c) 

1 - v'(I-A)"^c 1 - v'(I-A)"^c/(l-c) 1 - [c+v'(I-A)"^c] 

Plugging these results back into Equation (30), 

1 - [c+v'(I-A)~ c] 

v'(I-A) 
- 1  
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(I-D) 
- 1  

. -1 
0 (I-A) + Mzu' 0 Mz 

-1 
B(I-A) + M(Bz+c^)u' M(Bz+c^) 

Mu' 0 M 

(31) 

where 

and 

u' = v'(I-A) , 

z = (I-A) , 

M = 
-1 

1 - [v'(I-A) c + c] 1 - (u'c+c) 

(32) 

Notice that the vector of final demands associated with this new inverse 

matrix is d' = (x", r', G). Substituting the inverse in Equation (31) 

into Equation (22) gives the following closed system solutions: 

X = [(I-A) ̂  + Mzu']f + (Mz)G (33) 

r = [B(I-A)'^ + M(Bz+c^)u']f + f^ + M(Bz+c^)G (34) 

Y = (Mu')f + MG (35) 

If c=0 and c=0, then M=1 and the above solutions reduce to 

X = (I-A)"^f 

r = B(I-A)"^f + f, 

Y = u'f + G 
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which coincide with the solution formulas of the open system in 

Equations (26) - (28) for exogenously specified final demands f, f^, 

and G. 

The column sum of (I-A) is called the type I output multiplier. 

That is, if (I-A) ̂  is denoted by E, the sum of the elements of E^, 

where E^ is the j-th column of E, becomes the type I output multiplier 

of sector j. Since our model has two different types of autonomous 

consumption spending, f and G, there are two different types of the 

type II output multiplier; one for f and another for G. The type II 

output multiplier for f is the column sum of [(I-A) ̂ +Mzu']. 

Suppose that f and G increase by Af and AG, respectively. Let's 

denote the resulting increments in x, r, and Y by Axf, Ar^, and AY^, 

respectively, when c ^ 0 and c ^ 0, and by Ax°, Ar°, and AY°, 

respectively, when c = 0 and 6 = 0. Then, 

Ax*^ - Ax° = Mz(u'Af-fAG) (33b) 

Ar^ - Ar° = M(Bz+c^)(u'Af-MG) (34b) 

AY^ - AY° = (M-l)(u'6f-tAG) (35b) 

If c = 0 and c = 0, of course, the right-hand sides vanish and 

Ax^ = Ax°, Ar^ = Ar°, and AY^ = AY°. Hence, the expressions on the 

right-hand side of Equations (33b) - (35b) reflect the income effects, 

indicating additional production and resource requirements and the 

resulting increase in income created purely by the income effect. The 

difference between the type II and I output multipliers is measured by 
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Mz of Equation (33b). M appears in every expression of the right-hand 

side. 

The multiplier process of the closed system vs. that of the open system 

In Equation (35) 

Y = Mu'f + MG , 

M is instantly identified as a multiplier equivalent to the Keynesian 

multiplier. The equation says that, for example, if the government 

increases its direct income payment to households by AG, a multiplier 

process would increase income by MAG ultimately. Similarly, if the 

government increases its expenditures on produced commodities by Ax, 

the equation predicts an ultimate increase in income by Mu'Af. Depending 

on the nature of expenditure, two kinds of multipliers are recognized; 

M is the multiplier for non-commodity expenditures (G) and Mu' is the 

multiplier for commodity expenditures (f). 

Figure 3 is presented to assist tracing out the multiplier process 

underlying the multipliers. 

Suppose that commodity expenditures f be increased by Af. Production 

(x) needs to be expanded to meet the increase in the autonomous demand. 

So the initial injection Af is directed to x in the loop diagram of 

Figure 3. Production increases by Af. This requires AAf to be produced 

as intermediate inputs. (The technical coefficient matrix A represents 

2 
intermediate input requirements.) But, to produce AAf requires A Af as 

2 3 
intermediate inputs, and to produce AAf requires AAf as inputs and so 

on. So, total production to satisfy the initial increase in f is 
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/ 

Closed system 

Figure 3. Circular flow in the economy underlying the open input-

output system and the closed input-output system 
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(I + A + + )Af = (I-A)"^Af (36) 

if such an inverse exists. However, production requires not only 

intermediate inputs, but also primary and natural resources. Hence, 

the effect of production expansion propagates to resource employment (r) 

and then to income (Y) along the upper half loop of Figure 3. Since B 

and V are the resource requirement matrix and the income coefficient 

vector (of x), respectively, increases in resource employment and in 

income would be 

B(I + A + A^ + )Af = B(I - A)"^Af , (37) 

and 

v'(I + A + A^ + ....)Af = v'(I - A) ̂ Af = u'Af , (38) 

respectively. Thus, an increase in commodity expenditures by Af ends 

up in an increase in income by u'Af along the upper half loop. This 

makes the vector u a multiplier relevant to the upper half loop. If 

c = 0 and c = 0, the propagation process stops here, because there is no 

mechanism to connect the increase in income at the end of the upper 

half loop to another round of consumption expenditures along the lower 

half loop and then back to the upper half loop. As is shown in the 

open system loop in Figure 3, Y is not linked to x. An increase in 

non-commodity expenditures (G) increases income dollar by dollar, but 

does not affect the level of production because income is not linked to 

production. There is no term for G in Equation (26). Non-commodity 

expenditures do not have any multiplier effect in the open system. 
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The results in Equations (36) - (38) are exactly the open system 

solutions obtained vAien the open system Equations (26) - (28) are solved 

for f = Af. In fact, these results are v^at multiplier analysis of the 

open system is about. It is restricted to the upper half loop only. 

If c ̂  0 and c ^ 0, then the increase in income at the end of the 

upper half loop (the first round increase in income) propagates further 

down along the lower half loop and the small inside loop in Figure 3. 

On the one hand, the increase in income, which is equal to u'Af, gives 

rise to consumption expenditures of size cu'Af on commodities. These 

induced consumption expenditures become a new bill for production, 

opening propagation along the upper half loop at x. This propagation 

along the upper half loop starts with cu'Af and proceeds as spelled out 

in Equations (36) - (38) with Af replaced by cu'Af. 

On the other hand, the first round increase in income (u'Af) also 

gives rise to consumption expenditures of size cu'Af on resources. Since 

these expenditures are what resources receive as income, they result 

in an equivalent increase in income. So, the process along this line of 

expenditures forms a small inside loop in Figure 3. 

Therefore, the second round increases in income associated with the 

initial injection of Af add up to 

u'cu'Af + cu'Af = (u'c + c)u'Af 

which constitutes an injection into the third round. Consumption 

expenditures on commodities would rise by c(u'c + c)u'Af and those on 

resources by c(u'c + c)u'Af. Production and employment should expand to 
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meet those induced commodity expenditures, generating an increase in 

income by u'c(u'c + c)u'Af. Since c(u'c + c)u'Af directly increases 

income by an equal amount, the third round increases in income add up to 

u'c(u'c + c)u*Af + c(u'c + c)u'Af = (u'c + c)^u'Af 

which again becomes an injection into the fourth round. Writing out the 

successive rounds of income increases, we have 

AY = [1 + (u'c+c) + (u'c+c)^ + ....]u'Af . (39) 

Since 0 < (u'c+c) < 1 (by Theorem 2), the series converges and, therefore, 

AY = Af or Y = Mu'Af , (40) 

which is exactly what Equation (35) gives for f = Af and G = 0. 

Suppose that non-commodity expenditures G rather than commodity 

expenditures f be increased initially by AG. This increase may be in 

the form of direct income payments by the government to households or in 

the form of increased resource uses. In any case, income rises by AG. 

Therefore, an initial injection of AG is directed to Y in the loop diagram 

of Figure 3 and follows the same propagation process along the whole loop 

as was traced out for Af. The only difference is that the first round 

propagation process starts along the lower half loop with an initial 

increase in income of size AG rather than u'Af as in the case of an 

autonomous increase in commodity expenditure f. Hence, Equations (39) and 

(40) are replaced by 
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AY = [1 + (u'c+c) + (u'c+c)^ + ....] AG (39b) 

and 

AY = (u^c+g) AY = MAG . (40b) 

Again, this result is exactly vAiat Equation (35) gives for G = AG and 

f = 0. 

The propagation process of autonomous spending forms a 'closed loop' 

in the closed system, while it forms an 'open loop' in the open system. 

Two types of the multiplier process are unveiled accordingly; along the 

upper half loop, the multiplier process involving production and, along 

the lower half loop, the one involving consumption expenditures. The 

closed system covers both types. Since the open system covers only 

the former type along the upper half loop, it gives only one (income) 

multiplier, u, which explains by how much income multiplies as a result 

of production. Let's call this (vector) multiplier 'the sub-multiplier', 

because it accounts for only vhat takes place within the producing 

sectors when autonomous spending is changed. 

Dividing the open system (income) multiplier for f, u, by income 

coefficients of x gives the type I income multipliers as follows; 

u'd'^ = v'(I-A)"V^ 
V V 

where is a diagonal matrix whose i-th diagonal element is v^ (income 

coefficient of x^). Similarly, since the closed system (income) 

multiplier for f is Mu', the so-called type II income multipliers are 

given as 
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Obviously, once the type I income multipliers are known, the type II 

income multipliers are obtained simply by multiplying the type I by M. 

Hirsh first pointed out that the type II is a constant multiple of the 

type I (36). Bradley and Gander proved this rigorously (8). Our 

result shows that the constant is none other than M which is equivalent 

to the Keynesian multiplier of the orthodox Keynesian macro-model, as 

will be shown below. 

The input-output multiplier process vs. the Keynesian multiplier process 

Let's call M the input-output Keynesian multiplier. To examine 

the relationship between M and the orthodox Keynesian multiplier 

denoted by K, assume that u^ = 1 for all i, so that u' = (1, 1, ..., 1). 

Then, 

^ l-(u'c+c) ~ 1 - c* ~ ^ 

where c* is the aggregate marginal propensity to consume. Thus, the 

input-output Keynesian multiplier becomes the Keynesian multiplier of the 

orthodox Keynesian macro-model. This is true vdien a leak in the 

expenditure stream is introduced. For instance, when there exist some 

imports, K turns out to be 

K = I 
1 - (c*-m*) 

where m* is the marginal propensity to import and c* now stands for the 

aggregated marginal propensity to consume domestic goods. 
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In our input-output system. Equation (20a) is now replaced by 

(I-A)x - (c-m)Y = f 

and the multiplier for G becomes 

M = , (41) 

l-[u'(c-m)+c] 

where c and m are vectors of the disaggregated marginal propensity to 

consume domestic goods and to import, respectively. Again, if u^ = 1 

for all i, then 

M = = K . (42) 

l-(c*-m*) 

Hence, if elements of the sub-multiplier u (open system income 

multipliers for f) are all unity so that an increase in commodity 

expenditures results in an increase in income by the same amount (along 

the upper half loop), then M coincides with the orthodox Keynesian 

multiplier. In fact, in this case, no difference is made in multiplier 

effects by how the bundle of f is composed of what kinds of commodities. 

For example, if the government increases its purchase of commodity i 

and j by one dollar divided in the proportion of (1-p) to p between the 

two, then 

(l-p)u^ + pUj = (1-p) + p = 1 

whatever p is. Furthermore, no difference is made by i<hether autonomous 

spending is on f or G. Since 
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n 
u'f = Z f. , 

i ^ 

u'f is the total commodity expenditures. Equation (35) now becomes 

n _ _ 
Y = M u ' f  +  M G  =  M (  S f .  + G )  =  M G  =  K G  ,  

i ^ 

where G is the total autonomous expenditures without a particular 

reference to whether the expenditures are in the form of G or f. The 

multiplier process of the closed input-output system coincides with 

that of the Keynesian model. 

In general, however, different industries have not only different 

income coefficients (v\'s), but also different production coefficients 

(e^j's) of final outputs, so that u^ may not be uniform for all i, much 

less unity for all industries. In fact, the strength and purpose of 

input-output analysis is to capture these kinds of individual 

characteristics for each producing sector. The sub-multiplier u 

quantifies them in the input-output multiplier process. Therefore, a 

difference is made in multiplier effects not only by whether an 

autonomous expenditure is in the form of f or G, but also by how the 

bundle of f is composed of what kinds of commodities. 

Multiplier analysis discussed so far assumes no leakage in the sub-

multiplier process (along the upper half loop). This may not be the 

case, for example, if a part of the intermediate inputs is imported. 

In the input-output system, let be the amount of imported 

intermediate input i. Then, Equation (20a) is rewritten as^ 

^See Chenery and Clark (12, pp. 23-25). 
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X .  + F. - Ea.. X .  - c.Y = f. (i=l, 2 ,  ..., n) (20b) 
I X  i j j i  1 ^ ' '  '  

Assume that 

F. = F. + m.x. 
1  1  X I  

where is the import coefficient. Then Equation (20b) becomes 

(I+F-A)x - cY = f , 

where f includes F^, and F is a diagonal matrix whose i-th diagonal 

element is m^. As a resuit, the Leontief inverse (I-A) ̂  is replaced 

throughout all previous equations by (I+F-A) , so that the sub-

multiplier u is redefined as 

u' = v'(I+F-A). 

In the input-output system, the leakage due to import of intermediate 

inputs is absorbed into the Leontief inverse matrix and, hence, the 

sub-multiplier u. 

In the Keynesian framework, Miyazawa's treatment of the imported 

intermediate inputs is briefed here (52). He defined 

R = total intermediate inputs used; 

a = total intermediate input requirement per dollar of total 

gross outputs; and 

t = the self-sufficing ratio of intermediate inputs (i.e., the 

ratio of the amount of home-supplied inputs to R). 
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Since he did not deal with the marginal propensity to consume 

A — 
resources, let c = 0. Suppose that autonomous demand increase by AG 

regardless of whether it is in a form of f or G^. Initially, production 

should expand by AG to meet the demand, which requires taAG as home-

supplied intermediate input. But, to produce taAG requires (ta)^AG as 

— 2 " « 2 — 
inputs, and to produce (ta) AG requires (ta) AG and so on. Hence, 

total production to satisfy the initial increase in autonomous demand is 

[1 + ta + (ta)^ + (ta)^ + ...] AG = — AG . (43) 

1 - ta 

Since (1-a) is the value-added ratio (i.e., the amount of income generated 

per dollar of total gross outputs), total increase in income associated 

with the production is 

(1-â) [1 + (tâ) + (tâ)^ + ] AG = ^ AG . (44) 

1 - ta 

This equation is a generalization of Equation (38). The ratio, 

(l-a)/(l-ta), is the Keynesian counterpart of the sub-multiplier u. 

Notice that 

(l-a)/(l-ta) < 1 

where equality holds when t = 1, i.e., \^en there is no leakage in the 

sub-multiplier process. Miyazawa formulated the Keynesian multiplier 

process as follows; 

yazawa did not differentiate f and G. 
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AY = [u + u^(c*-m*) + u^(c*-m*)^ + ....]AG = AG (45) 

l-u(c*-Tn*) 

where 

u = (l-a)/(l-ta) . 

Our multiplier analysis discussed so far shows that the 

multiplier process Miyazawa depicted is relevant only to the autonomous 

demand for commodities, i.e., relevant only when AG = Af. Figure 4 

explains this. Since the first term of the series in Equation (45) 

(the initial increase in income) is u AG, by implication, the starting 

point of the multiplier process was set at x in the loop diagram. 

Suppose that non-commodity expenditure be increased by Ac (i.e., 

AG = AG). Since this increase is simultaneously \Aiat resources 

receive as income, the initial increase in income is AG. The starting 

point of the multiplier process is Y in the loop diagram. The 

corresponding multiplier process is demonstrated by 

—  — 2  2 -
AY = [1 + u(c*-m*) + u (c*-m*) + ....] AG 

= AG . (46) 

l-u(c*-m*) 

If it is assumed that u = 1, the series in both Equations (45) and (46) 

reduce to the following familiar Keynesian multiplier formula: 

1 + (c*-m*) + (c*-m*)^ + .... = . 

l-(c*-m*) 

The sub-multiplier process recedes out of sight because the Keynesian 

sub-multiplier is unity by assumption and only the multiplier process 
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sm-u 

\ 
\ 

Keynesian model 

c* 

sm = sub-multiplier 

Closed input-output 
system 

-m 

Figure 4. Circular flow in the economy underlying the orthodox 

Keynesian macro-model and the (closed) input-output 

system 
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involving consumption spending along the lower half loop is made explicit. 

Suppose that the marginal propensity to consume resources is not 

zero (c ^ 0). Then, tracing out the multiplier process along the loop 

of Figure 4 revises Equations (45) and (46) as follows: 

AY = {1 + [u(c*-m*)+c] + [u(c*-m*)+c]^ + ...} uAf 

Af 

(45b) 

and 

l-[u(c*-m*)+c] 

AY = {1 + [u(c*-m*)+c] + [u(c*-m*)+c]^ + AG 

AG 

(46b) 

l-[u(c*-m*)+c] 

When f and G simultaneously increase by Af and AG, respectively, we have 

AY = KuAf + KAG 

for the Keynesian macro-model, and 

Y = Mu'Af + MAG 

for the closed (input-output) system, where 

K = and M = 

l-[ïr(c*-m*)+c] l-[u'(c-m)+c] 

Now, it is clear that there exists a perfect correspondence in style 

between the Keynesian multipliers (Ku and K) of the orthodox Keynesian 

macro-model and the input-output Keynesian multipliers (Mu' and M). The 
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only difference between them is that u, c*, and m* are scalars, while 

u, c, and m are vectors. This is natural in that the orthodox Keynesian 

model is an aggregated model, while the input-output model is a 

disaggregated model. If each u^ (the sub-multiplier of sector i) of u is 

assumed equal to u (the sub-multiplier of the Keynesian model), i.e., if 

it is assumed that a one-dollar increase in commodity expenditures, 

regardless of whether they are on conmodity i or j, ends up uniformly 

in a u dollar increase in income in the sub-multiplier process, then 

the input-output Keynesian multiplier M becomes identical to the 

orthodox Keynesian multiplier K and the closed input-output system 

collapses into the Keynesian model. There still remains, however, a 

difference between the multiplier effect of commodity expenditures (f) 

and that of non-commodity expenditures. That is, a different composition 

of the expenditure would lead to a different multiplier effect on the 

economy. If u and u^ are further assumed equal to unity for all i, 

then this difference vanishes, as shown before. 

Impact Analysis and Multi-objective Analysis 

Granted that there exists a shortage of a resource and that 

competition exists for the use of existing supplies of the resource, one 

of the problems is to achieve efficiency in allocation of the resource. 

If efficiency is attained, a maximum social value of goods and services 

will flow from a given quantity of the resource. Two types of analytical 

methods on resource allocation can be juxtaposed; marginal analysis 

and linear programming. 
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Standard economic theory characterized by marginal analysis asserts 

that, for an efficient allocation, the resource should be so allocated 

that all uses derive equal value in use from the marginal unit used. In 

the regime visualized by this marginal analysis, production factors are 

continuously substitutable for each other. Thus, if the amount of one 

factor employed be reduced by a small amount, it will be possible to 

maintain the quantity of output by a small increase in the amount of 

the other factors employed. Moreover, each successive unit decrement 

in the amount of a factor will require a slightly larger increment in 

the amount of the factor that is substituted, if output is to remain 

constant. 

A different production regime is visualized by linear programming 

(and input-output analysis). In this regime, the quantity of output 

is in fixed relations with the quantities of factor inputs. Factors 

cannot be substituted for each other except by changing the levels of 

various outputs, because each production uses inputs in fixed ratios. 

Usually, linear programming does not seek to determine directly the 

optimal quantity of each factor input, but, instead, the optimal levels 

of each production. From these levels the inputs quantities follow in 

due course. Accordingly, output substitution plays a role analogous to 

that of factor substitution in marginal analysis (16, pp. 143-144). In 

fact, linear programming frequently uses the notion of a 'process' or 

'activity', the notion of a specific method for performing an economic 

task. The essential simplification achieved in input-output analysis 

and linear programming is the replacement of the mysterious notion of 
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production function in marginal analysis by the hard-headed notion of the 

process or activity. The process is an observable unit of activity and 

can be empirically estimated without elaborate analysis. Linear 

programming and input-output analysis belong in the application-oriented 

economic theory. 

Linear programming model incorporating income effect 

A direct substitution of the augmented Leontief inverse of 

Equation (23) into Equation (22) provides the following alternative 

expressions of the closed system solutions; 

X = (I-A-cv') ^(f+cnG) 

r = (B+c^v')(I-A-cv') ̂ (f+cnG) + f^ + c^nG 

Y = v'(I-A-cv') ̂ (f+cnG) + nG 

(33c) 

(34c) 

(35c) 

These solutions can be also expressed as follows; 

r 

Y 

= (I-D^) 
- 1  

f 

f 

nG 

+ (I-D^) 
- 1  

% \ 
c 

r 

0 
\ / 

nG 

= (I-Dg) 
-1 

f+nG 

nG 
\ 

where 
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Since 

y 

(I-A-cv') ^ o
 

1 
o
 

1 

(Bfc^v')(I-A-cv') ̂  ; I* 1 0 

v'(I-A-cv') ̂  

1 1 
1 1 
! 0 1 1 
1 1 

y 

r ' 1 
(I-A-cv') 1 0 

(I - D^) - -(B+c v') Î 
'• 1 

1 m+1 
-V' ! > 

Equations (33c) - (35c) can be rewritten as 

(I-A-cv')x = f + cnG 

•(B+c^v*)x + r = + c^nG 

-v*x + Y = nO 

(33d) 

(34d) 

(35d) 

Suppose that the supplies of resources are given by r. Uses of 

resources must be limited by this resource availability: 

r < r . 

Hence, imposing the resource supply constraints revises Equation (34d) 

as follows: 

(B+c^v')x < r-(f^+c^nG) . (34e) 

Making Equation (35d) the objective function and replacing Equation (34d) 
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by (34e) leads to the following linear programming problem that 

incorporates the income effect into the linear programming model applied 

in the previous chapter: 

Max Y = v'x + nG 

subject to 

(I-A-cv')x + s^ = f + cnG 

(B+c^v')x + s = r - (f^+c^nG) (47) 

X > 0, s > 0, s > 0 
— X — '  — 

or 

(I-A-cv') 1 0 In 

(B+CpV') ! Im 0 

X 

s 

s 
X 

f+cnG 

r-(f^+c^nG) (47b) 

X > 0, s >0, s>0. 

where s^ = (s^^, s^^, •••> ®xn^' s' = (s^, s^, s^)• are vectors 

of slack variables. The vector s^, if it is positive, represents by 

how much production falls short of final demand. Solving the linear 

programming problem (47) provides solutions for gross production and 

resource employment with the income effect incorporated, and also a set 

of shadow prices associated with all the resource constraints of the 

model. 
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Linear programming is applied extensively to real-world problems, 

not because the real world is linear, but because the technique is 

very powerful. A major aspect of the method's power is the information 

about the impact of a change in the parameters on the solutions. For 

instance, suppose that a change takes place in supply of a certain 

resource. Due to interdependences among economic sectors, such a change 

can have pervasive effects on the economy's production, overall resource 

employment, and, hence, income. Since the objective function is 

addressed in terms of income maximization, the impact of the change on 

the level of income is related to the idea of the shadow price, which 

is a useful concept for imputing a price to the resource constraint. 

If decisions on resource allocation are complicated by considerations 

of other objectives or non-economic constraints (for example, legal, 

physical, and political constraints) in addition to the efficiency 

objective, it would be of interest to see how such multiple objectives 

affect allocation of a particular resource and the resulting shadow 

price. In this case, an impact analysis would allow us to figure out 

trade-off's among objectives. 

It is possible to consider a variety of variations in the parameters 

(for example, variations in the coefficients of the objective function, 

in the technical coefficients, in the resource requirement coefficients, 

in resource availability, etc.) and conduct corresponding impact 

analysis (14, 70). The impact analysis presented below is on the case 

where there arises a shortage of a certain resource (due to increased 
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demand or decreased supply or both) and where considerations of additional 

objectives other than the stated efficiency objective are involved. 

Linear programming model for impact analysis 

Suppose that the economy's current production is in equilibrium. 

Production is in equilibrium if it is just equal to the quantity 

demanded for all purposes; consumption, investment, inventories, exports, 

and so on. As shown in the basic input-output system, such equilibrium 

is characterized by the input-output solution, regardless of a reference 

to a particular objective or objectives. In terms of the linear 

programming problem (47), the equilibrium is described by s^ = 0. Such 

de facto equilibrium in current production must have been feasible with 

respect to the current resource supplies, so that s > 0 (i.e., r < r). 

Then, from Equation (47b) 

^ s 

X 
—X 

f  + 

= Q 

S r -
(48) 

where 

Q = 

(I - A - cv') 

(B + CpV') 

\ 
! Im 

Since 

(I - A - cv')"^ 

N 

-(B + CpO')(I - A - cv')"^ I 
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the economy's production and resource employment are given by 

X = (I - A - cv') ̂ (f + cnG) (49) 

s r - [(B + c^v')(I - A - cv') ̂  + fJ. + c^nG] . (50) 

Equation (49) is the same as the Equation (33c). Notice that the 

bracketed term in Equation (50) represents the total resource requirements 

r under the input-output solution, so that 

Now, suppose that due to an increase in resource demand or a 

decrease in resource supply or both, a shortage surges up in resource j 

(like the recent energy crunch). Such a shortage of a particular 

resource calls for an overall reallocation of each resource because of 

interdependences among resource uses. However, as pointed out before, 

in the face of the resource shortage, linear programming does not seek 

to determine directly the optimal reallocation of each resource input, 

but, instead, the optimal re-adjustment of each production in the light 

of an objective or objectives. That is, the adjustment to the resource 

shortage is carried out through "output substitution". Therefore, the 

relevant question is how to trim off each production in order to meet 

the new resource supply and demand situation. 

To answer this question, the following spade work is in order. 

Instead of specifying n slack variables, s^, in the linear programming 

problem (47), let's introduce a dummy sector which controls the economy's 

s = r - r > 0 . 
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overall production adjustment to the resource shortage. Let be an 

"initial" reduction of production by sector i and interpret as the 

amount purchased by the dummy sector from sector i. Let x^ be the 

initial reduction of the economy's total production necessitated by the 

resource shortage. Then, x^ represents the total amount of purchase by 

the dummy sector. By how much the economy's total production would be 

"ultimately" reduced depends on the size of the multipliers of the 

economy. Each sector's initial production reduction should add up to the 

total initial production reduction of the economy. Hence, 

*d " *id "*• *2d *nd ' 

Further, let 

""id = î̂ d • 

Then, 

A A 
a. + a. + ... + a, = 1 . 
1 z n 

The (nxl) vector a whose i-th component is a^^ represents the 

proportion in which the initial reduction of total production spreads 

among sectors. For example, a = (%, %, 0, ..., 0)' indicates that the 

initial reduction of the economy's total production is evenly divided 

between sector 1 and sector 2. What the value of individual a^ would be 

is crucial, because it determines the direction and magnitude of the 

impacts of the stated resource shortage. This will be fully discussed 

in the next subsection. For the time being, vector a is regarded as 
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the result of purposeful allocation decisions under the possible multiple 

objectives and thus is taken as exogenously specified. One of the 

purposes of this subsection is to show how a given a affects the 

economy's production, resource employment, and income. 

To summarize the spade work so far in the linear programming jargon, 

the slack variable s^ of s exits out of basis because the j-th resource 

constraint is binding, and the variable x^ replaces s^ to enter the 

basis. 

Therefore, our new linear programming problem becomes 

max Y = vx' + nG 

subject to 

X 

A 
S 

f + cnG 

r - (f^ + c ÂG) 
(51) 

X > 0, s > 0 , 

where is a (n+m)x(n+m) matrix such that 

Qc = 

(I - A - cv') 

(B + c^v') 

0  0  . . .  a^  . . .  0  

0 0 ... a ... 0 
n 

1 0  . . .  0  . . .  0  

0  1  . . .  0  . . .  0  

0  0  . . .  0  . . .  1  
\ 
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and 

s - (s^, s^, ®j+l' ' 

The (nxl) sub-vector of the (n+j)th column of is vector a and all 

other elements of it are zero. The solution that maximizes Y is given by 

s 

= Q -1 

\ 

f + cnG 

r - (fr + c^nG) 

(52) 

The matrix can be rewritten as 

Qc - Q + 

where 

a = 

A \ 

^1 

A 
a 
n 

0 

- 1  

0 

\ 

n+j 

n+j 

0 

1 

0 

0 
\ / 

n+j 

By Theorem 2 again. 
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- 77% 
n+j 

(53) 

where 

•'j ° + GA+]Q'̂ :) 

Equation (52) is rewritten as 

X 

A 
S 

= Q - 1  

= Q -1  

f + cnG 

r - (fj. + ĉ nG) 

f + cnG 

r - (fj. + ĉ nG) 

(54) 

f + cnG 

r - (fj. + ĉ nG) 

This indicates that the new solutions for x and s are divided into two 

parts ; the solutions in the absence of the stated shortage of resource 

j and the impacts of the shortage of resource j. 

The first part of the solution is already spelled out in 

Equations (49) and (50) in terms of (I-A-cv*) Since 

(I-A-cv') ̂  = (I-A) ̂  + Mzu' 

by Equation (31), plugging this back into Equations (49) and (50) gives 

-1 
f+cnG {(I-A)"l +Mzu'}f + MzG 

r - r 
(55) 

where 

r = [B(I-A) M(Bz+c )u']f + f + M(Bz+c )G 
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as was given by Equation (34). The vector r represents total resource 

requirements to satisfy the given final demands f, f^, and G in the 

absence of any limitations on resource availability. 

Mathematical manipulation on the second part of Equation (54) 

leads to the following expressions (see Appendix): 

- 1  

n+j 

A \ 
f+cnG 

r - (fj.+ĉ nG) 
= - (rj - Tj) (56) 

f+cnG 
N, 

r-(fr+CrnG) 

{(I-A) ̂ +Mzu'}a 
N 

-{B(I-A)"^-HyI(Bz+c^)u'}a-ej 

(57) 

kj = [B^(I-A)"^ +N(B^z+Cpj)u']â (58) 

where B^ is the j-th row of B. On plugging Equation (57) into (54), 

, "" V A 
(r -r )a 

X = [(I-A)" + Mzu']f + MzG - [(I-A)" +Mzu'] — (59) 

, J 
-1 (r.-r )a 

s = r - r + [B(I-A) +M(Bz+c )u*] —"z—^— (60) 

j 

(60b) 

The bracketed term, Bj(I-A) M(BjZ+c^j)u', in Equation (58) stands for 

the j-th resource multiplier for f, indicating how much of resource j 

is required per unit of final outputs f. Therefore, k^ shows how much 

of resource j is tied up to the production reduction according to a. 
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If â = e^, kj represents the amount of resource j released by one unit 

reduction of production by sector i. If a = (%, 

represents the amount of resource j saved jointly by a production 

reduction of % units in sector 1 and a production reduction of % units 

in sector 2. Since (r^-r^) is the total quantity of the shortage of 

resource j, (r^-r^) divided by k^ dictates how much in total the economy 

should initially cut down its production because of the shortage of 

resource j. As indicated in Equation (60b), (r^-r^) divided by k^ 

is equal to x^, the total amount purchased by the dummy sector. 

The total initial production reduction multiplied by a, 

"j ' 

accounts for how the initial reduction is actually carried out. For 

example, if the total reduction stands at $300, i.e., 

•V = 300 , 

and if a = e^, then sector i alone takes care of the total reduction by 

$300. If a = (1/3, 1/3, 1/3, 0, ..., 0)', the reduction is divided up 

into $100 for sector 1, 2, and 3, so that each of them slashes production 

by $100. Therefore, (rj-r^)a/kj shows how the total initial production ' 

reduction is allocated among sectors. 

Once the initial production reduction due to the resource shortage 

takes place, it touches off multiplier effects throughout the economy, 
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because the initial reduction calls for, via interdependences among 

sectors of the economy, a series of production reductions by the other 

sectors, even though they were not initially hit by the resource 

shortage. The matrix preceded by (rj-r^)a/kj in Equation (59), 

[(I-A)"^ + Mzu'] , 

accounts for such multiplier effects. Therefore, the third component 

with a negative sign in Equation (59) represents the total ultimate 

production reduction the economy undergoes as a result of the shortage 

of resource j. The first two components of Equation (59) represent, 

of course, economy's current production in the absence of such a 

shortage. Equation (59) may be rewritten as 

-1 (r.-r.)a 
X = X - [(I-A) + Mzu'] —— (50') 

J 

where x° is the input-output solution for x, i.e., the maximum production 

in the absence of any resource shortages. 

Similarly, the third long component of Equation (60) accounts for 

the effect of the j-th resource shortage on employment of other resources. 

The bracketed term of it, 

[B(I-A)"^ + M(Bz + Cp)u'] , 

stands for the resource-employment multiplier for f, indicating the 

amount of resources (other than resource j) required per unit of final 

outputs f. This term is non-negative and (rj-r^)a/kj is also non-negative, 

So, the whole third term is non-negative. Therefore, the third component 
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measures a rise in resource unemployment due to the production reduction 

which is in turn caused by the shortage of resource j. 

Thus, Equations (59) and (60) demonstrate the pervasive impacts of 

a shortage of a certain resource on the economy's production and 

employment of the resources under a certain objective-oriented production 

plan a. What is left for explanation is the impact of the shortage 

on income and determination of the content of vector â, which is 

discussed below. 

Allocative decisions under single and multiple objectives and the 

shadow price equation 

Since the objective function is stated as 

Y = v'x + nG, 

substituting x of Equation (59) into this objective function gives (see 

Appendix) 

M(r. - r.)u' 
Y = Mu'f + MG ^ ] â (61) 

"j 
By the assumption that there is a shortage in resource j, rj-rj>0. Also, 

M, u', kj, â > 0. If there is no such shortage (i.e., r^=rj), the last 

term vanishes and the maximum income, Mu'f + MG, is guaranteed. So, 

the last term indicates a reduction in income due to the resource 

constraints. If we put (r^-r^) = 1, the last term becomes 

^ . (62) 
j 
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This is none other than the shadow price of resource j, because it 

indicates the change in the value of the objective function (i.e., the 

change in income) that is achieved if the j-th resource constraint were 

tightened by one unit. 

Equations (61) and (62) show that the level of income and the value 

of the shadow price resulting from the adjustment to a resource shortage 

depend on the size of the input-output Keynesian multiplier. The 

greater the multiplier, the greater the impact of the resource shortage 

on income and on the shadow price (the lower the resulting income and 

the higher the shadow price). 

Equations (61) and (62) can be rewritten with spelled out 

completely and with the shadow price denoted by as follows; 

M(r.-r.)u'a 
Y = Mz'f + MG ^—] (61b) 

[Bj(I-A)"l + N(Bjz + a 

Mu' a 

P = . (62b) 

[Bj(I-A) + M(B'z + c^j)u'] â 

Notice that vector a appears in both the numerator and denominator of 

both equations. 

Suppose that the only objective is maximization of income, i.e., 

the efficiency objective. Since the last term in Equation (61b) has a 

negative sign, to achieve this objective requires this reduction of 

income due to the stated resource shortage to be minimized. Given that 

all the coefficients (technical coefficients, income coefficients. 
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resource coefficients, disaggregated marginal propensities to consume) 

are constant and given the amount of the stated resource shortage, the 

problem then is how to choose vector a to achieve such an objective. 

The only constraint on vector a is that all components of a are non-

negative and they add up to one. The mathematical programming problem 

to determine a is as follows: 

Min M(r^-r^)u'a/k'â 

subject to 

q' a = 1 

â > 0 

where 

k' = Bl(I-A)"^ + M(B'.z + c .)u' 
J J RJ' 

q' — (1, 1, •••] 1) « 

Called the fractional programming problem, programming problem (63) 

belongs to a class of non-linear programming. Consider the following 

two programming problems; 
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Problem I 

min (b'x + b^)/(d'x + d^) 

subject to 

A'x - c > 0 

X > 0 

where d'x + d > 0, b and d are scalars. 
o — o o 

Problem II 

min b'Y + b Y 
o o 

subject to 

A'Y - cY > 0 
o — 

d'Y + d Y =1 
o o 

Y > 0 

Y > 0 
o 

where 

h = d ' x  +  d ^ > 0  ( 6 4 )  

Y^ = 1/h > 0 (65) 

Y = Y^x > 0 . (66) 

Charnes and Cooper (11) proved that Problem I and Problem II are 

equivalent, which can be summarized in the following theorem: 
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Theorem 3: Under the conditions of Equations (64) - (66), all 

feasible solutions in Problem I are feasible in Problem II, and 

conversely, except when = 0. Hence, if Y* and Y* are optimal 

solutions of Problem II, x* is an optimal solution of Problem I, 

and Yg ^ 0, then 

min (b'x + b )/(d'x + d ) = b'Y* + b Y* 
o 0 0 0 

and X* = (1/Y*) Y* solves Problem I. 

A use of Theorem 3 in our problem (63) leads to the following linear 

programming problem^: 

^Let h = k'â, w = 1/h, and w = w â = â/h. Then, 
o o 

M(r.-r.)u'a/k'a = M(rj-r.)u'a/h = M(r.-r.)u'w. 
J J J J J 

On multiplying both sides of q'â = 1 in Equation (63) by w^, 

q'w â = w 
^ o o 

which reduces to q'w = w . Since w = w^a, k'w = Wgk'â. But k'a = h 

and Wq = 1/h. Hence, w^k'â = 1, so that k'w = 1. Let â*, w*, and wg be 

optimal solutions. Then by Theorem 3, 

M(rj-rj)u'â*/k'â* = M(r^-r^)u'w* . 

Since w* = 1/h*, M(rj-r^)u'a*/k'â* = w*M(r^-rj)u'â*. Therefore, 

w*M(r.-r.)u'a* = M(r.-r.)u'w* or à* = w*/w* . 
o J J J J o 



www.manaraa.com

139 

Min M(rj- r^)u'w 

subject to 

q'w - = 0 , (63b) 

k*w = 1 , 

w > 0 , 

Wq > 0 » 

where w is a (nxl) vector and w^ is a scalar. This is a very simple 

linear programming problem with two constraints (besides the non-negative 

constraints) and with multipliers as coefficients. Theorem 3 says that 

solving this linear programming is equivalent to solving non-linear 

programming (63), Let â*, w*, and wj be optimal solutions. Then by 

Theorem 3, 

a* = w*/w^ . (67) 

Since the linear programming problem. Equation (63b), has only two 

constraints (except for non-negativity constraints), only two variables 

out of (n+1) variables enter the basis and, hence, only two variables 

have a positive value; w^ and one of w. Therefore, a* is a unit 

vector, i.e., only one element of a* is unity and all the other elements 

of a* are zero. This implies that, to maximize income, only a single 

sector should be chosen for a production reduction to meet the stated 

resource shortage. Since â appears in both the numerator and 

denominator in Equation (61b), the sector to be chosen is the one whose 

coefficient in the objective function, M(r.-r.)u'/k', is the smallest. 
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Let sector i be chosen thereby. Then, a* = e^. The maximum income and 

the associated shadow price under the production adjustment plan as 

indicated by a* = e^, denoted by Y* and P*, respectively, are given by 

Y* = Mu'f+MG-{M(r.-r.)u./[B'.E 4M(B!z+c )u,]} (61c) 
J J 1 J ^ J ^ 

and 

P* = Mu./[B'.E -fM(Blz+c )u ] (62c) 
S 1 J X J rj 1 

v^ere E^ is the i-th column of (I-A) ̂  and is the i-th element of u 

(the income multiplier of sector i). The level of production and 

employment of resources that leads to this income and shadow price are 

obtained by substituting for a in Equations (59) and (60). 

A brief reference to Equation (34) shows that the denominator of 

Equations (61c) and (62c) stands for the requirement of resource j per 

unit of final output produced by sector i. Hence, the shadow price as 

given by Equation (62c) is in fact the productivity of resource j to 

the entire economy when used in sector i (not the productivity of 

resource j to sector i). The last term of Equation (61c) represents 

the amount of the 'ultimate' reduction in the economy's total income 

x^en one unit of the short-supplied resource is taken away from sector i. 

What this implies is that, when maximization of income is the only 

one objective to be pursued, it is unnecessary to run a separate linear 

programming problem to determine vector a. What is needed is simply 

to calculate, according to the formula given by Equation (62c), the 

productivity of resource j to the entire economy 'when used in each 
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sector and choose the sector with the lowest productivity. If, as a 

result, sector k is chosen, set â = e^. The solutions for production 

and resource employment that result from setting a = e^ in Equations (59) 

and (60) are the ones that lead to the maximum income that can be 

achieved under the stated resource shortage. 

If c = 0 and c = 0, Equation (62c) reduces to 

Pg = "i/B'.Ej^ . (62d) 

An economic evaluation of water by Lofting and McGauhey (44) reported 

this value for various industries in California. A similar study by 

Young and Martin (86) took this value as a criterion for water 

allocation in Arizona^. 

Suppose that there are several other objectives besides the 

efficiency objective to be considered in resource allocation decisions, 

because allocation of natural resources typically involves public 

interests. Since one cannot maximize every stated objective, the 

multiplicity of objectives involves conflicts among objectives and 

trade-off's among objectives (14, 20). 

A solution which maximizes one objective will not necessarily 

maximize any of the other objectives. One important analytical goal of 

multi-objective analysis is to generate information that is presented to 

a decision maker in a manner that shows range of choices and trade-offs 

among objectives. 

^They called that value "income generating capacity" rather than 
the shadow price. 
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Suppose that we have two objectives denoted by Zj^ and Zg as shown 

in Figure 4. A closed set of choices formed by the polygon connecting 

points 0, A, B, C, D, E, and F, constitutes the feasible region for 

choice-making in a hypothetical situation. By the northeast rule 

(14, p. 71), the non-inferior set of choices is found to be the heavy 

line connecting point B, C, D, and E. In other words, any points on this 

heavy line are not dominated by any other points in the feasible set, 

while any point in the feasible set which is not on the heavy line is 

dominated at least by one point on the heavy line. Hence, an optimal 

solution to be chosen must be on the heavy line, i.e., in the non-inferior 

set. It should be noted that solutions in the non-inferior set are not 

comparable. The amount of one objective that must be sacrificed to gain 

an increase in the other objective is called a trade-off (14, p. 74). A 

movement from one non-inferior solution to another non-inferior one 

involves such a trade-off. In Figure 4, the trade-off is measured by 

the slopes of the heavy line. 

If the preference function is known, the "best-compromise" solution 

is determined at the point of the non-inferior set where the preference 

function and the configuration of the non-inferior set are tangent to 

each other. For instance, if a preference function is given by the 

curve p^ as shown in Figure 4, the best-compromise solution is determined 

at point C. The articulation of the preference function belongs to the 

decision maker. One role of the analyst is to present such a 

configuration of the non-inferior set. But, the real problem is how to 

find out such a configuration. 
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Z 
2 

A 

0 

Figure 4. Illustration of the constraint method in 

generating the configuration of the non-

inferior set of choices in a two-objective 

case. 



www.manaraa.com

144 

The most intuitively appealing technique to generate the contour 

of the non-inferior set is %hat is known as the constraint method 

(14, p. 115; 34, p. 223). The method essentially involves imposing a 

constraint (or constraints) on one objective (or objectives where there 

exist more than two objectives) and solving the constrained optimization 

problem by successively changing the allowable level of the other 

objective(s). 

Suppose that, in Figure 4, is the efficiency objective 

(maximization of Y in our model) and that Zg > where is the 

minimum allowable level of . Depending on different values of L^, two 

different horizontal lines are drawn in Figure 4. Notice that, in 

Figure 4, Z^ is maximized at point E in a separate maximization of Z^. 

In our problem of choosing a in Equation (63) (or w in Equation 63b), 

point E corresponds to the solution derived from substituting â* = e^ 

as obtained in problem (63) or (63b) into objective function (6lb). 

Likewise, a separate maximization of Zg gives point B as an achievable 

maximum of Zg. Therefore, two separate maximizations of Z^ and Z2 

provide two points in objective space, B and E, to be initially observed. 

The constraint, is shown to reduce the feasible region from the 

original polygon OABCDEF to the new polygon 0*ABODE', so that the 
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original income maximization point, E, is not feasible any more. Point 

E' is a new observed point in the contour of the non-inferior set. An 

important observation is that is now maximized at E' in the new 

feasible set. Therefore, E' can be found by maximizing subject to 

Z2 (and, of course, subject to the other constraints associated 

with decision variables involved in the model). Similarly, another 

point of the non-inferior set is found by maximizing Zj^ subject to 

Zg > 1-2 and other constraints, which gives point D to be observed in 

objective space. By successively changing the value of L^, the 

configuration of the non-inferior set can be brought to the surface. 

In applying the constraint method to our model, the problem under 

the stated resource shortage is now to choose, subject, to the considera

tion of additional objectives, a production reduction plan embodied in 

vector a that leads to non-inferior solutions. Since a maximum income is 

attained by minimizing the last term of Equation (61b), the programming 

problem (63) can be revised as follows; 

Min M(r.- r.)u'a/k'a 
J J 

subject to 

q'a = 1 (63c) 

Ha > h 

a > 0 

where the second set of constraints. Ha > h, reflects constraints on a 

due to the consideration of objectives other than maximization of income. 

Let the resulting solution be a**. Possibly, a* 4 â**. If a* = â**, 
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this implies that the second set of constraints are redundant, i.e., they 

are not binding in attaining the maximum income under the single 

objective of maximization of income. If this second set of constraints 

is effectively binding, a* 4- â**. Since production adjustment to the 

resource shortage under a* leads to a maximum level of income, the 

production adjustment under a** necessarily leads to a lower level of 

income. Therefore, the difference between the level of income achieved 

under a* and under a** reflects how much income should be forgone to 

satisfy other stated non-efficiency objectives, i.e., the imputed costs 

associated with non-efficiency objectives. For instance, suppose that 

â** resulted from adding the set of constraints associated with a 

consideration of income distribution to the efficiency objective. Then, 

the difference between the level of income under â* and under a** measures 

the trade-off ratio between the efficiency objective and the income 

distribution objective. Similarly, if a consideration of national 

security, in addition to the efficiency objective, lead to a**, then 

the difference between the income level under â* and under a** indicates 

the trade-off between national security and income. 

The solution for a obtained from programming problem (63c) is 

always relative to the constraints imposed on â. A different set of 

the constraints on a would lead to a different â and to a different 

set of trade-offs. One thing most remarkable about the constraint 

method as applied to our model is that, since the impact of the stated 

resource shortage is collected into a separate term in the objective 

function as stated in Equation (61b), it is unnecessary to solve the 
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whole linear programming problem (51) integrating the constraints on 

A A 
X, s, and a (actually x^^'s) in order to obtain an optimal a or to 

derive trade-offs among objectives. What is required is simply to look 

at the objective function as spelled out in Equation (61b) and to set up 

a separate reduced program which includes only the constraints on the 

vector a. Thereby, the solution process for an optimal a and the 

generation and evaluation of alternatives in terms of several objectives 

are greatly simplified. In particular, the single objective of income 

maximization dispenses with even such a separate program. 

The input-output Keynesian multiplier modified by a resource shortage 

Equation (61) is reproduced here for an easy reference: 

Y = Mu'f + MG - Mu'(rj - r^)a/k^ . (61) 

Once a shortage of resource j takes place by the amount of (r^-r^), 

production of the economy should be trimmed off by the amount of 

(r. - ïj)â/kj . 

This production reduction has a multiplier effect on income, with the 

(vector) multiplier given by Mu'. As a result, the total income of 

the economy reduces by the amount indicated by the last term with a 

negative sign in Equation (61). It is clear that the greater the 

shortage, the larger the magnitude of production re-radjustment, and 

the greater the reduction in income. With the total supply of resource 

j given by r^, the magnitude of the shortage is determined by the 



www.manaraa.com

148 

demand for the resource, because 

r^ = [B^(I-A)"V M(B^z+c^^)u']f+ M(B^z+c^j)G + f^^ . (68) 

In other words, the magnitude of the shortage depends on the level of 

autonomous spending f and G. An increase in autonomous spending is 

shown to augment the shortage. So, a change in the level of autonomous 

spending has a two-pronged effect on income in the presence of a 

resource shortage. On the one hand, an increase in autonomous spending 

increases income via the multiplier process. On the other hand, it adds 

to the total resource requirement of the economy and, after output 

substitution taking place as dictated by the vector a, causes a 

reduction in income. On balance, the income increasing effect of the 

increase in autonomous spending is partially choked off by its income 

decreasing effect. 

Substituting Equation (68) into Equation (61) and rearranging terms 

with respect to exogenous variables f, G, and f^^ (see Appendix), 

. A 
^ ^ Mu'a _ 

Y = Mu'f + MG + r- Cr.-B'.(I-A)"-^f-f .], (61d) 
b'J(I-A)-H •- J J ' ' 

or alternatively 

1 M _ -1 -, 
Y = Mu'f + MG + (1- - ) [r. - Bl(I-A) f - f .], (61e) 

B^z+Cpj M J ^ 

where 

A 1 
M = : r- (69) 

1- (u'c+c)+(BjZ+c^j)u'a/Bj(I-A) a ' 
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Equations (61d) and (61e) bring forth a new input-output Keynesian 
/>• 

multiplier M which is modified by the resource shortage. Therefore, a 

one-dollar increase in non-commodity spending G creates additional income 

A 
not by M dollars, but by M dollars now. 

What makes a difference between this new multiplier and the original 

input-output Keynesian multiplier M is the last term in the denominator 

A 
of M. This last term can be rewritten as 

(Blz+c )a 
u' —I . (69b) 

The denominator of the fraction refers to the requirement of resource j 

associated with a in the absence of the income effect of production and 

the numerator to the requirement of resource j solely arising from the 

income effect. So, the fraction reflects the relative significance of 

the income effect on resource j (relative to the resource requirement in 

the absence of such effect). Expression (69h) represents the portion of 

the change in income associated with a that is explained by the income 

effect. If there is no such income effect on resource j (or, if it 

exists, it is negligibly small), expression (69b) vanishes and 

/\ 
M = M . 

Also, if there is no shortage with respect to resource j (i.e., â = 0), 

A 
then expression (69b) vanishes and again M coincides with M. Since 

expression (69b) is supposed to be non-negative, 

M < M , 
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implying that the resource shortage dampens the magnitude of the input-

output Keynesian multiplier. The extent to which the multiplier effect 

dampens depends first on which sector(s) is (are) selected for production 

adjustment (i.e., depends on a). After a is determined, it then depends 

on the requirements of resource j by the sector(s), on the significance 

of the income effect on resource requirements of the sector(s), and on 

the magnitude of the multiplier u of the sector(s). So, the greater the 

income effect on the use of resource j, the smaller the resource 

requirement, the greater the multiplier, the greater will the dampening 

effect be. 

Equations (61d) and (61e) demonstrate the above-mentioned conflicting 

effect of commodity spending f on income. A one-dollar increase in f 

will raise the level of income by Mu'f dollars initially, but the 

economy-wide output substitution process following the resulting 

increased shortage will exert a downward pressure on income measured 

by 

Bl(I-A)"^ M 

(1- - ) . 
B'z+c^^ M 

So, the net effect turns out to be a compromise of these conflicting 

forces. 
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CHAPTER V. SUMMARY, CONCLUSIONS, AND FURTHER 
RESEARCH NEEDS 

Summary and Conclusions 

The first objective of this study sought to develop an analytical 

framework integrating both competitive and interdependent dimensions 

of resource uses. To achieve this objective, a linear programming model 

that consists of an input-output system and resource constraints, was 

formulated. 

The second objective was to apply the model to Northwest Iowa. For 

an application of the model, the 12-county area in Northwest Iowa was 

selected. The application was geared to determining \diether or not 

the water resources of Northwest Iowa can support the region's 

population and economic growth as projected by the State of Iowa to the 

year 2020, given the current water use rates and given the current 

production structure and inter-sectoral relations as embodied in the 

input-output table of Iowa. For the input-output system, the 

13-industry input-output table of Iowa was adopted (4). Seven water 

supply sources were identified for the region; three ground water 

sources and four surface water sources. Under the assumption that water 

supply sources of each county are independent of each other and each 

county's water availability from a particular water supply source is 

not augmented by water transportation, an individual water supply 

constraint was imposed on each supply source of each county. 

Because of the difficulty in predicting the future of irrigation 

in Northwest Iowa, despite an expectation of a substantial increase in 
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irrigation particularly in this region, some upper limits to irrigation 

were established in terms of land and water availability for irrigation. 

The application began with an analysis of data on the region's 

population and economic status and on its growth projections. Based 

on the results of the analysis, the level of final demands to support 

projected population and economic growth of the region was specified. 

This was followed by estimation of production and water requirements 

to satisfy the specified final demand goal. The water coefficients 

used in estimation of total water requirement were taken from the water 

study by Barnard and Dent (5). However, the water coefficient of 

irrigated corn production was independently estimated county by county 

for this study. 

The results of the application show that the level of final demands 

that can be achieved subject to the water supply constraints of 

Northwest Iowa coincided with the target level of final demands that 

was imposed in the model, implying that the available water supplies of 

Northwest Iowa do not constitute a limiting factor to achieving the 

target level of final demands which was based on income and population 

growth projected for the region to the year 2020. 

Irrigation was shown to be by far the largest water consuming 

activity. Should all the Class I and II land of the region be irrigated, 

more than 85 percent of the total water requirement of the region would 

go to irrigation, leaving only 15 percent of the total to be shared 

among industrial and final uses. Even in this case, the region's total 

water requirement falls short of the amount of water that can be supplied 
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from the surficial aquifer of the Missouri River flood plain, setting 

aside the other surficial aquifers. 

Hence, it can be concluded that Northwest Iowa as a whole holds 

potentially sufficient water supplies to depend on for the region's 

population and economic growth, which is not much out of line with the 

projection series made by the State of Iowa. 

In the subregional level, however, the substantial water 

requirement associated with expansion of irrigation may impose a heavy 

burden on the subregion's water resources. To irrigate both Class I 

and II land, most counties of the region must reach out to reservoir 

storage, the most expensive water supply source in the region, for 

additional water. Some counties (Buena Vista, Clay, O'Brien, Osceola, 

Sac, and Sioux) may not be able to irrigate all their Class I and II 

land due to water shortages. Irrigation of Class I and II land was 

shown to push shadow prices associated with water supply constraints 

of bedrock aquifer, surficial aquifers, interior streams, and Big 

Sioux River to positive levels, $1.00, $1.50, $1.30, and $1.30 per 1,000 

gallons, respectively. 

Due to different water availability, expansion of irrigation forces 

some counties of the region to exhaust cheap water supply sources more 

quickly than the other counties and to turn toward more expensive water 

supply sources. Notably, even if all of its Class I and II land be 

irrigated, Woodbury County on the Missouri River flood plain has a 

tremendous water surplus. Furthermore, the surplus consists of the 

cheapest water in the region. This suggests desirability of water 
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transfers from surplus areas to shortage areas. Since the surficial 

aquifer of the Missouri River flood plain constitutes the largest, as 

well as the cheapest, water supply source in the region, it should come 

first under consideration of the region-wide water distribution. However, 

such water distribution may claim a huge amount of outlays (64). 

Therefore, a careful evaluation of costs and benefits is required to 

determine the scale of the region-wide water transfers. 

The third objective of this study was to suggest an extended model 

for the future application to state and regions. The extension was 

necessary to obtain more accurate estimates of production and resource 

requirements incorporating the effect of an increase in income on 

production and resource uses and also to allow an impact analysis 

incorporating multipliers and allocative decisions under possible 

multiple objectives. Comprising the open input-output system, the 

applied model may significantly under-estimate production and resource 

requirements, the level of income and, hence, shadow prices. 

Development of the extended model began with an extension of the 

basic input-output system of the applied model. The result of this 

extension shows that the difference between the estimate without and 

with the income effect involves the Keynesian multiplier as derived 

from the input-output system, indicating an importance of estimation 

of the Keynesian multiplier in estimation of production and resource 

requirement. A comparison of the multiplier process of the input-output 

system with that of the orthodox Keynesian macro-model shows that under 

certain assumptions, the Keynesian multiplier of the orthodox Keynesian 
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macro-model can be substituted for the Keynesian multiplier as derived 

from the input-output system. 

Combining the extended input-output system with the resource 

constraints produced the extended linear programming model that 

incorporates the effect of income on production and resource uses. 

Based on the resulting model, an impact analysis was presented, i.e., 

an analysis on the impact effects of a change in demand and supply of 

a certain resource on production, resource uses, and income. The 

analysis provided a short-cut method to measure such impacts, including 

the formula of the Keynesian multiplier modified by a resource 

shortage and the formula of the shadow price expressed as a function of 

the Keynesian multiplier and allocative decisions. The analysis 

described also how the multiplicity of objectives affects allocation 

decisions, thereby providing a short-cut method to calculate trade-off's 

among multiple objectives. 

Application of the extended linear programming model and the 

results of the impact analysis requires additional information on the 

income consumption linkage in particular. Application procedures are 

briefed below. 

Extension of Current Results to the Region and State 

The extended model was expressed in such a way as to retain the 

basic structure of the original applied model as much as possible. As 

a result, in applying the extended model to Northwest Iowa to obtain 

improved results, what is needed is simply to modify the technical 
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coefficient matrix by incorporating the commodity-wise consumption data 

into it. If data on the marginal propensities to consume resources 

are available, the resource requirement coefficient matrix (B matrix 

in the applied model) needs to be modified to incorporate such data. 

Since the extended model differentiates commodity expenditures 

(autonomous consumption expenditures on produced goods and services) 

and non-commodity expenditures (autonomous consumption expenditures 

on resources), data on final demand need to be compiled according to 

the differentiation. Once all these data have been lined up, a re-run 

of the model would provide a new set of estimates of production and 

water requirements and shadow prices incorporating the income effect. 

Since the technical coefficient matrix, the resource requirement 

coefficient matrix (including the water coefficients), and commodity-

wise consumption data are available for the state, the extended model 

is directly applicable to the state, when detailed state-wide water 

supply data become available. Since detailed data on final demands 

of the state are already available from the input-output study by 

Barnard (4), the tedious procedures of estimating final demand as 

followed in this study are waived. 

The water coefficient of each industrial sector of the state was 

already estimated by Barnard and Dent (5). However, the water 

coefficient of crop production estimated by them is based on the 

insignificant irrigation practice in Iowa. Therefore, it needs to be 

revised to reflect the expected increase in irrigation in Iowa. The 

water coefficient of crop production estimated for Northwest Iowa can 
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be extended to the state-wide application. Alternatively, the water 

coefficient of crop production in the other regions of Iowa can be 

independently estimated following the same procedures as used in this 

study and then combined with the water coefficients of crop production 

estimated for Northwest Iowa. 

In applying the extended model to the state, the technical 

coefficient matrix made by Barnard (4) should be modified to incorporate 

the commodity-wise consumption data. The resource requirement matrix 

also can be modified to incorporate the marginal propensities to 

consume resources, if such data are available. 

Except for these minor modifications, the procedures of applying 

the extended model to the state are basically the same as those 

followed in this study, because the Northwest Iowa economy was treated 

as a miniature of the entire Iowa economy in this study's application. 

However, selections of procedures to be followed and kinds of data to 

be used totally depend on the nature of the future research. 

Further Research Needs 

In the input-output framework, all the costs of economic activities 

should be addressed in terms of intermediate and resource inputs. Due to 

inadequate data, the application of this study put the monetary costs 

of water supply directly into the objective function. However, a 

proper treatment of water supply costs requires the costs to be 

estimated in terms of intermediate and resource inputs and to be 

incorporated into the input-output system rather than into the objective 
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function. This implies that the input-output system be expanded to 

comprise water production as a separate sector (or sectors depending on 

the number of different water supply sources). 

In the application of the model, water transportation was assumed 

away. However, the results of the application indicate desirability 

of water transfers. Therefore, a model integrating water transportation 

activities needs to be developed. The water transportation costs should 

be treated within the input-output framework like the costs of other 

activities. 

This study was concerned with the quantity dimension of the water 

problem, ignoring the water quality dimension. A supply of water with 

a particular quality may serve a number of purposes unequally well. 

Different uses demand different properties in water or at least vary 

in their toleration of particular properties. Water can be regarded as 

differentiated in kinds and grades determined by its quantity. Thus, 

supply and demand functions of water can be each regarded as consisting 

of numerous quality-oriented segments, each segment characterized by 

relatively homogeneous quality (80, p.7). In connection with the model 

applied in this study, this implies that demand for and supply of water 

need to be further subdivided according to water quality variations. 

The water supply constraints are then to be specified in terms of both 

quantity and quality. 

When the water quality dimension is introduced, the competition 

among water uses over limited water supplies may involve both quantity 

and quality elements. One use of water may reduce availability of 
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water for the next uses, not only quantitatively, but also qualitatively 

by lowering water quality. Thus, one user of water may be in a position 

to retain benefits from use while shifting costs to other users by 

lowering water quality. This condition is termed externalities 

(80, p. 10). There have been quite a few studies that deal with this 

externality problem in the input-output framework (30, 43, 46, 72). 

Hence, further studies are needed in order to integrate input-output 

analysis on externalities into the linear programming model as 

formulated in this study. 

The assumption underlying the application in this study is that 

all the coefficients involved, water coefficients in particular, be 

invariant over time. This may not be the case. Rising water supply 

costs may discourage waste in water uses and encourage more 

recirculation of water. The implementation of water pollution control 

may prompt water saving technology. However, technology may not always 

be water saving. New production processes may increase water use 

rates if the new production technique makes cost saving in other inputs 

sufficient to cover the increased water use. Therefore, the future 

research should involve reasonable projections of technical and water 

coefficients based on the future trends. 
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APPENDIX: MATHEMATICAL FOOTNOTE 

Let (I-A) ^ = E. By Theorem 2, 

Ecv'E nEcv'E 
(I-A-cv')" = E + = E + 

1-v'Ec 1-nv'Ec 

Ecv'E ^ ^ 
= E + (because n = ) 

1-c-v'Ec 1-c 

= E + Mzu' . 

That is. 

(I-A-cv')"^ = E + Mzu' . (Fl) 

Using this result, we can obtain the following expressions: 

. Ecv'E v'E 
v'(I-A-cv')"^ = v'(E + ) = 

1-v'Ec 1-v'Ec 

nv'E u' 

r-A-cv'^ = 

1-nv'Ec l-(u'c+c) 

Ecv'E Ec 

Mu' ; (F2) 

(I-A-cv') c = (E + )c = ; (F3) 
1-v'Ec 1-v'Ec 

- zu' c u' 
(B+c v') (I-A-cv')"^ = B[E + 3 + (by Fl and F2) 

l-(u'c+c) l-(u'c+c) 

(Bz+c )u' 
= BE + = BE + M(Bz+c )u' ; (F4) 

l-(u'c+c) ^ 
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1 + v'(I-A-cv') = 1 + 
vEc 

1-v'Ec 
(by F3) 

1-v'Ec 
and (F5) 

+ (B+c^v')(I-A-cv') 

= B(I-A-cv')c + c^[l+v'(I-A-cv') ^c] 

BEc+c 

1-v'Ec 

Bz+c^ 

1-v'Ec 

(by F3 and F5) 

(F6) 

In Equation (54), 

- 1  
f + cnG 

r - (fj.+c^nG) 

(I-A-cv') ^ 

\ 
-(B+c^v')(I-A-cv') ^ 

By Equation (F3), 

0 

I m 

\ 
f + cnG 

\ 

r - (fj.+c^nG) 

(I-A-cv) ^ cnG = 
nEcG 

= MzG . 
1-v'Ec 

By Equation (F6), 
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_1 n(Bz+c ) 
[(B + c v')(I-A-cv') c + c ]nG = G 

^ ^ 1-v'Ec 

= M(Bz+c^)G . 

By Equation (F4), 

(B + c^v')(I-A-cv') = BE + M(Bz+c^)u' 

Hence, 

- 1  
f + cnG 

r - (fj, + c^nG) 
\ 

(E + Mzu' )f + MzG 

r - r 

\ 

where 

(F7) 

r = [BE + M(Bz+c^)u']f + M(Bz+c^)G + (F8) 

From Equation (F7), 

,-l 
n+j 

f + cnG 

\ 

r - (fj. + c^nG) 
= r. - rj . (F9) 

Since 

S 

-1 

E + Mzu' I 0 
1-
I 

-{be + M(Bz+c^)u'} I I 
m 

Q-^a = Q"^ 
a 

s ^ 

(E + Mzu ' ) â 

-{be + M(Bz+c )u'}a - e 

\ 

j 

(FIO) 

where e^ is a (mxl) vector whose j-th element is one and all other 
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elements are zero. From Equation (FIO), 

f + cnG 

r - (f + c^nG) 

^ 
(E + Mzu')Â 

-{BE + M(Bz+c^)u'}a - e^ 

Since, 

1 + Q a = 
(E + Mzu ' ) â 

-{BE + M(Bz+c^)u'}a - e^ 
+1 

(Fll) 

= -{BjE + M(B^z+c^j)u'} â , 

k .  =  - ( 1  +  e ' ^ ^ j  Q " ^ a )  =  [ B j E  +  M ( B j z  +  c ^ ^ ) u ' ] â  .  (F12) 

Combining Equations (F7) and (Fll) gives Equations (59) and (60). Notice 

that in Equation (60) s excludes the j-th resource. 

'd j 
Since x, = e'.s , 

_ r - r 
x ^  =  r j  -  T j  ^ 1  {[BjE + M(Bjz+Cpj)u']a - 1 } . 

Substituting Equation (F12) into this expression gives 

r. - r. 
='d = ^ 

J 

Since Y = v*x + nG, substituting x of Equation (59) leads to 
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Since 

( r .  -  r  )  
Y =  v '  { ( E  +  M z u ' )  [ f  ^ ^  â ]  +  MZG}  +  n G  

(r, - r ) 
= n (1+Mv*z) {u'[f ^^ â] + G } 

n M 
M = , n = 

1-v'z 1+Mv'z 

Hence, 

(r. - r ) ^ 
Y  =  M  { u ' [ f  -  — ^ ^  â ]  +  G  }  

M(r - r )u' 
= Mu'f + MG J â , (F13) 

which is Equation (61). Substituting r of Equation (F8) and of 

Equation (F12) into Equation (F13) provides 

M 
Y = ^ {[B!E +M(B'z+c )u']â(u'f) + [B'.E + M(Bz+c^.)«']aG 

J J j J 

-  r jU'â + r jU'â }  

M 
= — {(B!Eâ)u'f - (BÎEfXu'â) + (BlEâjG - (u'â)f^, + (u'â)r. } . 

k. j 
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Let 

M M(B'.Eâ) 
B'.Ea [= ^ 

kj ^ B^Ea + M(B^z+Cpj)(u'â) 

l-(u'c+c) + (Bjz+c^j)u'â/BjEâ 
] = M . (F14) 

Then, 

M(u'â) (u'â)/B'.Eâ 
= ] = Mu'â/B'.Eâ . (FIS) 

kj 1/M + (B^z+Cpj)u'â/B^Eâ ^ 

On substituting Equations (F14) and (F15) into Equation (F13), 

Equation (61c) is obtained. 
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